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Foreword

There is a serious problem in the recognition of sounds. It derives from
the fact that they do not usually occur in isolation but in an environment in
which a number of sound sources (voices, traffic, footsteps, music on the
radio, and so on) are active at the same time. When these sounds arrive at the
ear of the listener, the complex pressure waves coming from the separate
sources add together to produce a single, more complex pressure wave that is
the sum of the individual waves. The problem is how to form separate mental
descriptions of the component sounds, despite the fact that the “mixture
wave” does not directly reveal the waves that have been summed to form it.

The name auditory scene analysis (ASA) refers to the process whereby the
auditory systems of humans and other animals are able to solve this mixture
problem. The process is believed to be quite general, not specific to speech
sounds or any other type of sounds, and to exist in many species other than
humans. It seems to involve assigning spectral energy to distinct “auditory
objects” and “streams” that serve as the mental representations of distinct
sound sources in the environment and the patterns that they make as they
change over time. How this energy is assigned will affect the perceived num-
ber of auditory sources, their perceived timbres, loudnesses, positions in
space, and pitches. Indeed, every perceived property studied by psychoacous-
tics researchers seems to be affected by the partitioning of spectral energy.
While the name ASA refers to the competence of humans and other animals,
the name computational auditory scene analysis (CASA) refers to the attempt
by scientists to program computers to solve the mixture problem.

In 2003, Pierre Divenyi put together an interdisciplinary workshop that
was held in Montreal that autumn, a meeting focused on the topic of how to
separate a speech signal from interfering sounds (including other speech). It
is obvious why this topic is so important. Right now speech recognition by
computers is a delicate process, easily derailed by the presence of interfering
sounds. If methods could be evolved to focus recognition on just those com-
ponents of the signal that came from a targeted source, recognition would be
more robust and usable for human-computer interaction in a wide variety of
environments. Yet, albeit of overwhelming importance, speech separation
represents only a part of the more general ASA problem, the study of which
may shed light on issues especially relevant to speech understanding in inter-
ference. It was therefore appropriate that Divenyi assembled members of a
number of disciplines working on the problem of the separation of concurrent
sounds: experimental psychologists studying how ASA was done by people,
both for speech and non-speech sounds, neuroscientists interested in how the
brain deals with sounds, as well as computer scientists and engineers develop-
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ing computer systems to solve the problem. This book is a fascinating
collection of their views and ideas on the problem of speech separation.

My personal interest in these chapters is that they bring to forefront an
argument of special import to me as a cognitive psychologist. This argument,
made by CASA researchers, is that since people can do sound separation quite
well, a better understanding of how they do it will lead to better strategies for
designing computer programs that can solve the same problem. Others how-
ever, disagree with this argument, and want to accomplish sound segregation
using any powerful signal-processing method that can be designed from sci-
entific, and mathematical principles, without regard for how humans do it.
This difference in strategy leads one to ask the following question: Will one
approach ultimately wipe out the other or will there always be a place for
both? Maybe we can take a lesson from the ways in which humans and
present-day computer systems are employed in the solving of problems.
Humans are capable of solving an enormous variety of problems (including
how to program computers to solve problems). However, they are slow, don’t
always solve the problems, and are prone to error. In contrast, a computer
program is typically designed to carry out a restricted range of computations
in a closed domain (e.g., statistical tests), but can do them in an error-free
manner at blinding speeds. It is the “closedness” of the domain that permits a
strict algorithmic solution, leading to the blinding speed and the absence of
error. So we tend to use people when the problems reside in an “open” domain
and computers when the problem domain is closed and well-defined. (It is
possible that when computers become as all purpose and flexible in their
thought as humans, they will be as slow and as subject to error as people are.)

The application of this lesson about general-purpose versus specialized
computation to auditory scene analysis by computer leads to the conclusion
that we should use general methods, resembling those of humans, when the
situation is unrestricted – for example when both a robotic listener and a num-
ber of sound sources can move around, when the sound may be coming
around a corner, when the component sounds may not be periodic, when sub-
stantial amounts of echo and reverberation exist, when objects can pass in
front of the listener casting acoustic shadows, and so on. On the other hand,
we may be able to use faster, more error-free algorithms when the acoustic sit-
uation is more restricted.

If we accept that specialized, algorithmic methods won’t always be able to
solve the mixture problem, we may want to base our general CASA methods
on how people segregate sounds. If so, we need a better understanding of
how human (and animal) nervous systems solve the problem of mixture.
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Achieving this understanding is the role that the experimental psychologists
and the neuroscientists play in the CASA enterprise.

The present book represents the best overview of current work in the fields
of ASA and CASA and should inspire researchers with an interest in sound to
get involved in this exciting interdisciplinary area. Pierre Divenyi deserves
our warmest thanks for his unstinting efforts in bringing together scientists of
different orientations and for assembling their contributions to create the vol-
ume that you are now reading.

Albert S. Bregman
Professor Emeritus of Psychology
McGill University
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Preface

Speech against the background of multiple speech sources, such as crowd
noise or even a single talker in a reverberant environment, has been recog-
nized as the acoustic setting perhaps most detrimental to verbal
communication. Auditory data collected over the last 25 years have succeeded
in better defining the processes necessary for a human listener to perform this
difficult task. The same data has also motivated the development of models
that have been able to increasingly better predict and explain human perfor-
mance in a “cocktail-party” setting. As the data showed the limits of
performance under these difficult listening conditions, it became also clear
that significant improvement of speech understanding in speech noise is likely
to be brought about only by some yet-to-be-developed device that automati-
cally separates the speech mixture, enhances the target source, and filters out
the unwanted sources. The last decade has allowed us to witness an unprece-
dented rush toward the development of different computational schemes
aimed at achieving this goal.

It is not coincidental that computational modelers started looking at the
problem of auditory scene analysis largely in response to Albert Bregman’s
book (1990) which appeared to present a conceptual framework suitable for
computational description. Computer scientists, working at different laborato-
ries, rose to the challenge and designed algorithms that implemented human
performance-driven schemes, in order to achieve computational separation of
simultaneous auditory signals – principally with speech as the target. Compu-
tational Auditory Scene Analysis (CASA) has gained adepts and enjoyed
exposure ever since the first CASA workshop in 1995. Nevertheless, it
became clear early on that literal implementations of the systems described by
Bregman could not achieve separation of speech signals without blending
them with methods taken from other frameworks. Driven by different objec-
tives, such as analysis of EEG responses and neuroimaging data in addition to
analysis of acoustic signals, Independent Component Analysis (ICA)
appeared at about the same time, motivated by Bell’s and Sejnowski’s seminal
article (1995). Early implementations of ICA as the engine for blind separa-
tion of noisy speech signals gave impressive results on artificial mixtures and
served as a starting point for numerous initiatives in applying it to the separa-
tion of multichannel signals. However, limitations of ICA also became
apparent, mainly when applied to real-world multichannel or, especially, to
single-channel mixtures. At the same time, advances in speech recognition
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through the 1990s have led researchers to consider challenging scenarios,
including speech against background interference, for which signal separation
seems a promising approach, if not a much-needed tool. In a reciprocal fash-
ion, the influence of speech recognition has brought to CASA statistical
pattern recognition and machine learning ideas that exploit top-down con-
straints, although at the cost of using very large training sets to tune
parameters. Top-down techniques have been applied in conjunction with
ICA-based separation methods as well, contemporaneously with neurophysio-
logical findings that have been uncovering an ever larger role of corticofugal
efferent systems for speech understanding by human listeners.

A cursory survey of computational separation of speech from other acous-
tic signals, mainly other speech, strongly suggests that the current state of the
whole field is in a flux: there are a number of initiatives, each based on an
even larger number of theories, models, and assumptions. To a casual
observer it seems that, despite commendable efforts and achievements by
many researchers, it is not clear where the field is going. At the same time,
despite an accelerating increase in investigations by neuroscientists that have
led to characterizing and mapping more and more of the auditory and cortical
processes responsible for speech separation by man, our understanding of the
entire problem still seems to be far away. One possible reason for this gener-
ally unsatisfactory state of affairs could well be that investigators working in
separate areas still seldom interact and thus cannot learn from each other’s
achievements and mistakes.

In order to foster such an interaction, an invitational workshop was held in
Montreal, Canada, over the weekend of October 31 to November 2, 2003. The
idea of the workshop was first suggested by Dr. Mary P. Harper, Director of
the Human Language and Communication Program at the National Science
Foundation, who stood behind the organizers and actively helped their efforts
at every step. Her enthusiastic interest in the topic was also instrumental in
obtaining, within an atypically short time period, sponsorship by the Founda-
tion’s Division of Intelligent Information Systems at the Directorate for
Computer and Information Science and Engineering,. The workshop was
attended by some twenty active presenters — a representative sample of
experts of computational, behavioral, and neurophysiological speech separa-
tion working on different facets if the general problem area and using
different techniques. In addition, representatives of a number of funding agen-
cies also attended. Interspersed with presentations of the experts’ work, there
were periods of planned discussion that stimulated an intensive exchange of
ideas and points of view. It was the unanimous opinion of all those present
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that this exchange opened new alleys toward a better understanding of each
other’s research as well as where the whole field stood. The discussions also
identified directions most beneficial and productive for future work on speech
separation.

The workshop was, to our knowledge, the first of its kind and also timely.
Indeed, prior to the workshop, an overlook of the various methods would have
made the observer conclude that the sheer volume of contemporary work on
speech separation had been staggering, that the work had its inherent limita-
tions regardless of the philosophy or technological approach that it followed,
and that at least some of these limitations might be overcome by adopting a
common ground. This latter proposition, however, had the prerequisite that
proponents of different approaches get together, present their methods, theo-
ries, and data, discuss these openly, and attempt to find ways to combine
schemes, in order to achieve the ultimate goal of separating speech signals by
computational means. Reaching this objective was the Montreal workshop’s
main purpose. Another goal was to encourage investigators from different
fields and adepts of different methods to explore possibilities of attacking the
problem jointly, by forming collaborative ventures between computer scien-
tists working on the problem from different directions, as well as engaging in
interdisciplinary collaboration between behavioral, neurobiological, and com-
puter scientists dedicated to the study of speech. Finally, thanks to the
presence of program administrators from different Federal agencies at the
workshop, we hoped to create some momentum toward the development of
intra- and interagency programs aimed at better understanding speech separa-
tion from the points of view of computer science, behavioral science, and
neuroscience.

This book is a collection of papers written by the workshop’s participants.
Although the chapters follow the general outline of the talks that their authors
gave in Montreal, they have generally outgrown the material presented at the
workshop, both in their scope and their orientation. Thus, the present book is
not merely another volume of conference proceedings or a set of journal arti-
cles gone astray. Rather, it is a matrix of data, background, and ideas that cuts
across fields and approaches, with the unifying theme of separation and inter-
pretation of speech corrupted by a complex acoustic environment. Over and
above presenting facts and accomplishments in this field, the landscape that
the book wishes to paint also highlights what is still missing, unknown, and
un-invented. It is our hope that the book will inspire the reader to learn more
about speech separation and even will be tempted to join the rows of investi-
gators busy trying to fill in the blanks.
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The chapters of the book cover three general areas: neurophysiology, psy-
choacoustics, and computer science. However, several chapters are difficult to
categorize because they straddle across two fields. For this reason, although
the book is not divided into clearly delimited sections, the reader should rec-
ognize a thread that ties the chapters together and attempts to tell a coherent
story. Darwin’s send-off chapter introduces speech separation from the
behavioral point of view, showing human capabilities and limits. These capa-
bilities are examined from the viewpoint of neurophysiology in the chapters
by Sussman and Alain, both showing how auditory scene analysis can be
studied by observing evoked cortical potentials in alert human subjects. Cari-
ani’s chapter reviews data on recordings from the cat’s peripheral auditory
system and analyses the data to show how, even at a level as low as the audi-
tory nerve, the system is able to extract pitch information and perform a
complex computation—decorrelation—that may account for the separation of
the voice of two simultaneous talkers. Decorrelation also underlies ICA, a
procedure that can be successfully used for blind separation of simultaneous
speech streams, as Lee’s chapter demonstrates—the adjective “blind” refer-
ring to a statistical method that takes no assumption with regard to the origin
or nature of the source. A different approach is adopted in the chapter by Raj,
Seltzer, and Reyes, who propose a speech separation system that uses beam-
forming to enhance the output of a multiple-microphone array but that also
takes advantage of previously learned statistical knowledge about language.
An inferential approach is taken by Roweis in his chapter, based on probabi-
listic estimation of the input source, which is shown to help denoising,
separating, and estimating various parameters of speech. Stern is taking yet
another different route: applying auditory models to recover speech, both by
separation and by recognition—a hybrid bottom-up and top-down approach.
Irino, Patterson, and Kawahara show how speech separation can be achieved
by using a combination of two sophisticated signal processing methods: the
auditory image method (AIM) and STRAIGHT, a pitch-synchronous formant
tracking method. This latter method is further described by Kawahara and
Irino showing how STRAIGHT, a method consistent with auditory process-
ing, can also lead to the separation of speech signals even by itself. Auditory
models are the explicitly stated base of CASA, the focus of several successive
chapters. The one by Wang and Hu suggests that separation of speech from a
noisy background can be achieved by applying an estimated optimal binary
mask, but they also point out that no unambiguous definition of CASA cur-
rently exists. Slaney, in basic agreement with this proposition, presents a
historical overview of CASA and discusses its advantages as well as its flaws.
One undisputable positive trait of CASA is its ability to spatially segregate
signals by adopting features of binaural hearing. Brown and Palomäki show
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that these features can be applied to recover speech presented in a reverberant
environment—a notoriously difficult situation. Durlach, a proponent of the
now-classic equalization-and-cancellation (EC) model of binaural hearing,
shows how sound localization by listeners can be used for not only separating
but also interpreting mixed multiple speech signals. De Cheveigné takes the
EC concept further to demonstrate that the basic concept of this model can
also be applied to separate the mixed speech of several talkers on the basis of
fundamental frequency pitch. These multiple speech signals can be regarded
as examples of one stream masking the information, rather than the energy, in
the other stream or streams, as Brungart’s chapter shows. Divenyi takes an
analytic approach to informational masking to show how a given feature in a
speech stream—envelope fluctuations or formant trajectories—can be masked
by random sequences of the same feature in another stream. The chapter by
Xiong and Huang steps out of the acoustic domain and shows how visual and
auditory information by talkers speaking simultaneously interact and how this
interaction can be successfully used by humans and machines to separate mul-
tiple speech sources. Ellis addresses one of the ubiquitous problems of speech
recovery by machines: performance evaluation. The final chapter by Cooke
takes a broad view of speech separation. Looking through the lens of someone
committed to uncovering the mysteries of ASA and CASA, he proposes that
time-frequency information in badly degraded portions of speech may be
recovered by glimpsing at those regions where this information is not as
severely degraded.

While this round-up does no justice to the twenty-one chapters of the
book, it hopes to convey two important points. First, we want to emphasize
that at present the field of speech separation by human and machines is com-
plex and replete with ill-defined and un-agreed-upon concepts. Second,
despite this, we want to express our hope that significant accomplishments in
the field of speech separation may be come to light in the not-so-distant
future, propelled by a dialog between proponents of different approaches, The
book serves as an illustration of the complementarity, on the one hand, and
the mutual overlap, on the other, between these approaches and its sheer exist-
ence suggests that such a dialog is possible.

The volume would not exist without the contribution of many. Dan Ellis
and DeLiang Wang helped me organize the 2003 Montreal workshop. The
workshop was supported by the National Science Foundation and by a contri-
bution from Mitsubishi Electric Research Laboratories. I also want to
acknowledge the efficient technical support of the workshop by Reyhan Sof-
raci and her staff at the Royal Crown Plaza Hotel in Montreal. Theresa



xxiv Speech Separation

Azevedo, President of the East Bay Institute for Research and Education
threw all her energy behind the actual realization of the workshop and produc-
tion of this book. Joanne Hanrahan spent countless hours assembling, editing,
and formatting the chapters. I also want to thank Connie Field, my wife, for
tolerating my preoccupied mind before and during the preparation of this
book. Lastly and most of all, however, I want to express my gratitude to Mary
Harper, whose enthusiastic support of multidisciplinary research on speech
separation was responsible for the workshop and has created the impetus for
the book.

Pierre Divenyi

Bell, A.J. and Sejnowski, T.J., 1995, An information maximisation
approach to blind separation and blind deconvolution. Neural Computation,
7(6), 1129-1159.

Bregman, A.S., 1990, Auditory scene analysis: The perceptual organiza-
tion of sound. Cambridge, Mass.: Bradford Books (MIT Press).



Chapter 1

Speech Segregation: Problems and Perspectives.

Chris Darwin
Department of Psychology
School of Life Sciences, University of Sussex
cjd@biols.susx.ac.uk

1 INTRODUCTION

Although it has become increasingly obvious in the speech recognition lit-
erature that the recognition of speech mixed with other sounds poses difficult
problems, it is not clear what the appropriate approach to the problem should
be. On the one hand, recognition could be based on matching an internally
generated mixture of sounds to the input (mixed) signal (Varga and Moore,
1990). Such an approach requires good generative models not only for the tar-
get sounds but also for interfering sounds. On the other hand, the (potentially
multiple) sound sources could be segregated prior to recognition using low-
level grouping principles (Bregman, 1990). Such an approach could in princi-
ple be a more general solution to the problem, but depends on how well the
actual sound sources can be separated by grouping principles established gen-
erally with simple musical sounds. Is speech a single sound source in these
terms? What is a sound source anyway?

Like visual objects, sound sources can be viewed as being hierarchically
organised (the Attack of the Lowest note of the Chord of the Leader of the 1°
Violin section of the Orchestra), indeed much of the point of music is the
interplay between homophonic and polyphonic perceptions. Speech can be
regarded as a mixture of simpler sound sources: Vibrating vocal folds, Aspira-
tion, Frication, Burst explosion, Ingressive Clicks. For our native tongue,
these multiple sources integrate into “speech”, but for talkers of non-click lan-
guages, clicks may sound perceptually separate failing to integrate into the
sound–stream of the speech. Even a steady vocalic sound produced by the
vocal tract acting as a single tube can perceptually fragment into two sound
sources – as when a prominent high harmonic is heard as a separate whistle in
Tuvan throat music (Levin and Edgerton, 1999).
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Figure 1.1. Original (Berlioz Symphonie Fantastique)

Figure 1.2. LPC filtered (Berlioz + “where were you a year ago?”)

One can even question whether the notion of a sound source is appropriate
for speech. As Melvyn Hunt demonstrated many years ago, we can hear a
ghostly voice emerging through the orchestra when the orchestral sound
replaces laryngeal excitation in an LPC resynthesis of a sentence. The exam-
ple above is of the ubiquitous “Where were you a year ago” spoken twice.

Here it is perhaps the joint transfer function of multiple sound sources
which is giving the speech percept. Attempts at source separation could sim-
ply make matters worse!

In practice of course the speech we wish to listen to is not the result of fil-
tering an orchestra, and is often spatially well–localised. Although we can
attend to one voice in a mixture from a single spatial location, spatial separa-
tion of sound sources helps. How do listeners use spatial separation? A major
factor is simply that head shadow increases S/N at the ear nearer the target
(Bronkhorst and Plomp, 1988). But do localisation cues also contribute to
selectively grouping different sound sources?

An interesting difference appears between simultaneous and successive
grouping in this respect. For successive grouping, where two different sound
sources are interleaved, spatial cues, both individually and in combination
provide good segregation – as in the African xylophone music demonstration
on the Bregman and Ahad CD (1995).
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Figure 1.3. Streaming by spatial location in African xylophone music reproduced with
permission from Bregman and Ahad (1996).

However, a recent counter-intuitive result is that most inexperienced lis-
teners are surprisingly poor at using the most powerful cue for localising
natural speech (interaural–time differences – ITDs) to perform simultaneous
grouping of sounds which have no other grouping cues (Culling and Summer-
field, 1995, Hukin and Darwin, 1995, Drennan et al., 2003). The significance
of this result may be that binaural information about location is pooled across
the constituent frequencies of an auditory object, in order to improve the reli-
ability and stability of its perceived position (we don’t after all hear different
spectral parts of an auditory object in different locations, even under the most
difficult listening conditions). This observation, and others, argue for some
perceptual grouping preceding the use of binaural cues in estimating the loca-
tion of an object (Woods and Colburn, 1992, Darwin and Hukin, 1999). The
implication for speech segregation by machine, is that spatial cues may be of
only limited use (particularly in reverberant conditions) in the absence of
other cues that help to establish the nature of the auditory objects.

Different aspects of auditory scene analysis may use spatial cues at differ-
ent levels. For example, successive separation of interleaved rhythms depends
on subjective spatial position, rather than a difference in any one spatial cue
(Sach and Bailey, in press), while on the other hand the perceived continuity
of a tone alternating with noise depends on the ITD relations between the tone
and the noise, not on their respective spatial positions (Darwin et al., 2002).
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1 INTRODUCTION

From infancy we experience a complex auditory environment with acous-
tic information originating from several simultaneously active sources that
often overlap in many acoustic parameters. Despite this confluence of sound
we are able to hear distinct auditory objects and experience a coherent environ-
ment consisting of identifiable auditory events. Analysis of the auditory scene
(Auditory Scene Analysis or ASA) involves the ability to integrate those sound
inputs that belong together and segregate those that originate from different
sound sources (Bregman, 1990). Accordingly, integration and segregation pro-
cesses are two fundamental aspects of ASA. This chapter focuses on the
interaction between these two important auditory processes in ASA when the
sounds occur outside the focus of one’s attention.

A fundamental aspect of ASA is the ability to associate sequential sound
elements that belong together (integration processes), allowing us to recog-
nize a series of footsteps or to understand spoken speech. Auditory sensory
memory plays a critical role in the ability to integrate sequential information.
Think about how we understand spoken speech. Once each word is spoken,
only the neural trace of the physical sound information remains. Auditory
memory allows us to access the series of words that were spoken, and connect
them to make meaning of the individual words as a unit. Transient auditory
memory has been estimated to store information for a period of time at least
30 s (Cowan, 2001). In understanding how this memory operates in facilitat-
ing ASA, it is important to also understand the relationship between the
segregation and integration processes. The question of how sequential sound
elements are represented and stored in auditory memory can be explored
using event–related brain potentials (ERPs).
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2 EVENT–RELATED BRAIN POTENTIALS

ERPs provide a non-invasive measure of cortical brain activity in response
to sensory events. We can gain information about the timing of certain cogni-
tive processes evoked by a given sound because of the high temporal
resolution (in the order of milliseconds) of the responses that are time-locked
to stimulus events. ERPs provide distinctive signatures for sound change
detection. Of particular importance is the mismatch negativity (MMN) com-
ponent of ERPs, which reflects sound change detection that can be elicited
even when the sounds have no relevance to ongoing behavior (Näätänen et
al., 2001). MMN is generated within auditory cortices (Giard et al., 1990,
Javitt et al., 1994) and is usually evoked within 200 ms of sound change, rep-
resenting an early process of change detection. MMN generation is dependent
upon auditory memory. Evidence that activation of NMDA receptors plays a
role in the MMN process supports the notion that the underlying mechanisms
of this cortical auditory information processing network involve sensory
memory (Javitt et al., 1996). The neural representations of the acoustic regu-
larities (often called the “standard”), which are extracted from the ongoing
sound sequence, are maintained in memory and form the basis for the change
detection process. Incoming sounds that deviate from the neural trace of the
standard elicit MMN. Thus, the presence of the MMN can also be used to
ascertain what representation of the standard was stored in memory.

Figure 2.1 In the top panel, a typical auditory oddball paradigm is shown. An “oddball” or
infrequently–occurring sound (represented by the letter B) is randomly presented amongst a
frequently repeating sound (represented by the letter A). The oddball (B) elicits MMN in this
context. In the bottom panel, the same ratio of B to A sounds (1:5) is presented, but instead of
presenting B randomly, it is presented every fifth tone in the sequence. If the brain detects the
frequently–repeating 5-tone pattern then MMN is not elicited by the “oddball” (B) tone in this
context. See text for further details.
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3 MISMATCH NEGATIVITY IS CONTEXT–
DEPENDENT

MMN can be used to probe neural representations of the regularities
extracted from the ongoing sound input exactly because the response to a par-
ticular sound is based upon the memory of the previous sounds. This is
illustrated in Figure 2.1. Using a simple auditory oddball paradigm, in which
an “oddball” (or infrequently occurring sound) is presented randomly among
frequently repeating sounds, the oddball elicits MMN when it is detected as
deviating (e.g., in frequency, intensity, duration, or spatial location) from the
frequently repeating sound. In the top panel of Figure 2.1, a typical auditory
oddball paradigm is shown. The letter “A” represents a tone of one frequency
and the letter “B” represents a tone of a different frequency. The oddball (B)
elicits MMN because it has a different frequency than that of the standard (A).
In the bottom panel of Figure 2.1, the same ratio of B to A sounds is pre-
sented, but instead of presenting “B” randomly, it is presented every fifth tone
in the sequence. If the brain detects the regularity (the 5-tone repeating pattern
A-A-A-A-B-A-A-A-A-B...) then no MMN is elicited by the B tone (the
“oddball”). This is because when the 5-tone pattern is detected, the B tone is
part of the standard repeating regularity (Sussman et al., 1998a, 2002a); it is
not a deviant. Accordingly, it is important to notice that MMN is not simply
elicited when there is a frequent and an infrequent tone presented in the same
sequence. MMN generation depends on detection and storage of the regulari-
ties in the sound stimulation. The detected regularities provide the auditory
context from which deviance detection ensues. Thus, MMN is highly depen-
dent upon the context of the stimuli, either when the context is detected
without attention focused on the sounds (Sussman et al., 1999, 1998a, 2002b,
2003, Sussman and Winkler, 2001) or when the context is influenced by
attentional control (Sussman et al., 1998b, 2002a).

4 SEGREGATION PROCESSES AND ERPS

The acoustic information entering one’s ears is a mixture of all the sound
in the environment, without separation. A key function of the auditory system
is to disentangle the mixture and construct, from the simultaneous inputs, neu-
ral representations of the sound events that maintain the integrity of the
original sources (Bregman, 1990). Thus, decomposing the auditory input is a
crucial step in auditory information processing, one that allows us to detect a
single voice in a crowd or distinguish a voice coming from the left or right at
a cocktail party. The process of disentangling the sound to sources (ASA)
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plays a critical role in how we experience the auditory environment. There is
now considerable ERP evidence to suggest that auditory memory can hold
information about multiple sound streams independently and that the segrega-
tion of auditory input to distinct sound streams can occur without attention
focused on the sounds (Sussman et al., submitted-a, Sussman et al., submit-
ted-b, Sussman et al., 1999, Ritter et al., 2000, Winkler et al., 2003), even
though there remains some controversy about whether or not attention is
needed to segregate the sound input (Botte et al., 1997, Bregman, 1990, Bro-
chard et al., 1999, Carlyon et al., 2001, Macken et al., 2003, Sussman et al.,
1999, Winkler et al., 2003). Functionally, the purpose for automatic grouping
processes would be to facilitate the ability to select information. In this view,
the role of attention is not to specifically organize the sounds, some organiza-
tion of the input is calculated and stored in memory without attention.
Attentional resources are needed for identifying attended source patterns,
which is essential for understanding speech or for appreciating music. Atten-
tion, however, can modify the organization of the sound input (Sussman et al.,
1998b, Sussman et al., 2002a), which then influences how the information is
stored and used by later processes (e.g., the MMN process).

5 INTEGRATION PROCESSES AND ERPS

The perception of a sound event is often determined by the sounds that
surround it even when the sounds are not in close temporal proximity.
Changes in the larger auditory context have been shown to affect processing
of the individual sound elements (Sussman et al., 2002b, Sussman and Win-
kler, 2001). The ability of the auditory system to detect contextual changes
(such as the onset or cessation of sounds within an ongoing sound sequence)
thus plays an important role in auditory perception. The dynamics of con-
text-change detection were investigated in Sussman and Winkler (2001) in
terms of the contextual effects on auditory event formation when subjects had
no task with the sounds. The presence or absence of “single deviants” (single
frequency deviants) in a sound sequence that also contained “double devi-
ants” (two successive frequency deviants) created different contexts for the
evaluation of the double deviants (see Figure 2.2). The double deviants were
processed either as unitary events (one MMN elicited by them) or as two suc-
cessive events (two MMNs elicited by them) depending on which context
they occurred in (Sussman et al., 2002b). In Sussman and Winkler, the con-
text was modified by the onset or cessation of the single deviants occurring
within a continuous sequence that also contained the double deviants. The
time course of the effects of the contextual changes on the brain’s response to
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the double deviants was assessed by whether they elicited one MMN (in the
Blocked context) or two MMNs (in the Mixed context). The change of
response to the double deviants from one to two MMNs or from two to one
MMN did not occur immediately. It took up to 20 s after the onset or cessation
of the single deviants before the MMN response to the double deviants
reflected the context change. This suggests that there is a biasing of the audi-
tory system to maintain the current context until enough evidence is
accumulated to establish a true change occurred, thus avoiding miscalcula-
tions in the model of the ongoing sound environment. The results
demonstrated that the auditory system maintains contextual information and
monitors for sound changes within the current context, even when the infor-
mation is not relevant for behavioral goals.

6 RELATIONSHIP BETWEEN SEGREGATION
AND INTEGRATION IN ASA

Two important conclusions can be ascertained from the ERP results of the
segregation and integration processes discussed above. 1) Segmentation of
auditory input can occur without attention focused on the sounds. 2) Within–
stream contextual factors can influence how auditory events are represented

Figure 2.2 The white bars represent a frequently repeating tone (standard) and the black bars
represent an infrequently occurring tone with a different frequency than the standard (deviant).
In the top panel, a Blocked context is shown – every time a frequency deviant occurs a second
deviant follows it (called “double deviants”). The double deviants in this context elicit one
MMN. In the bottom panel, a Mixed context is shown – the same ratio of deviants to standards
is presented as in the blocked context, except that single deviants are randomly mixed in with
the double deviants. The double deviants in this context elicit two MMNs.
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in memory. How do these two processes – segregation of high from lowtones,
and integration of double deviants within a stream – interact when called upon
to function together? This was recently tested in a study investigating whether
contextual influences on auditory event formation would occur when two
concurrent sound streams were present in the auditory input (Sussman, sub-
mitted). It was hypothesized that the acoustic characteristics of the input (the
stimulus–driven cues) would be used to separate sounds to distinct sources
prior to the integration of elements and the formation of sound events. This is
what was found. Within–stream contextual influences on event formation
were found similarly as were found when one sound stream was presented
alone (as in Sussman et al., 2002b). Because the high and low sounds were
presented in an alternating fashion, the results indicate that the separation of
sounds to streams occurred prior to integration processes. Taken together with
previous results (e.g., Sussman et al., 1998b, Sussman et al., 1999, Yabe et
al., 2001), there is strong evidence that segregation is an earlier, primitive
process than integration that is initially driven by stimulus–characteristics of
the acoustic input. This evidence is consistent with animal studies demonstrat-
ing that the basic stream segregation mechanisms exist as part of all
vertebrates’ hearing systems (Fay, 2000, Hulse et al., 1997, Fishman et al.,
2001). Integration of sequential elements to perceptual units takes place on
the already segregated streams, which would be needed to identify within–
stream sound patterns in natural situations that contain acoustic information
emanating from multiple sources, making it possible to hear a single speech
stream in a crowded room.

The putative timing or sequence of events that has been demonstrated with
the ERP results of the studies discussed would essentially operate as follows
(the wealth of feedback and parallel processing mechanisms that are also
engaged in the neural model are not included here for simplicity). The mixture
of sounds enters the auditory system and is initially segregated according to
the acoustic characteristics of the input (the frequency, intensity, duration, and
spatial location components as well as the timing of the input). Sound regular-
ities are extracted from the input and integration processes, or sound event
formation, then operate on the segregated sound streams. The MMN process
uses this information (the segregated input and neural representation of the
relevant context) as the basis for detecting what has changed in the environ-
ment. When attention modifies the initial organization of the sound input, it
affects event formation and how the information is represented and stored in
memory (Sussman et al., 1998b, Sussman et al., 2002a), which can then affect
MMN generation (see Figure 2.1). It appears that the MMN process is a fairly
“late” stage auditory process leading to perception, a notion that is concordant
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with the wealth of data suggesting that MMN elicitation is closely matched
with the perception of auditory change events (e.g., Tittinen et al., 1994).

7 IMPLICATIONS FOR SPEECH PERCEPTION

The notion that the segregation of sounds to sources precedes auditory
event formation can be extended to include speech–processing mechanisms.
The data discussed here support the view that sound elements are integrated to
linguistic units (phonemes, syllables, and words) after the initial segregation
or organization of the input to distinct sources. Integration of sound elements
to perceptual units proceeds on the already segregated information. Speech
perception, according to this model, would rely, at least in part, on the primi-
tive ASA processes.
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1 INTRODUCTION

Sounds are created by a wide range of acoustic sources, such as several
people talking during a cocktail party. The typical source generates complex
acoustic energy that has many frequency components. In a quiet environment,
it is usually easy to understand what a person is saying. In many listening sit-
uations however, different acoustic sources are active at the same time, and
only the sum of those spectra will reach the listener’s ears. Therefore, for indi-
vidual sound patterns to be recognized – such as those arriving from a
particular human voice among a mixture of many – the incoming auditory
information must be partitioned, and the correct subset of elements must be
allocated to individual sounds so that a veridical description may be formed
for each. This is a complicated task because each ear has access only to a sin-
gle pressure wave that is the sum of the pressure waves from all individual
sound sources. The process by which we decompose this complex acoustic
wave has been termed auditory scene analysis (Bregman, 1990), and it
involves perceptually organizing our environment along at least two axes:
time and frequency. Organization along the time axis entails the sequential
grouping of acoustic data over several seconds, whereas processing along the
frequency axis involves the segregation of simultaneous sound sources
according to their different frequencies and harmonic relations.

Generally speaking, auditory scene analysis theory seeks to explain
how the auditory system assigns acoustic elements to different sound
sources. Bregman (1990) proposed a general theory of auditory scene
analysis based primarily on the Gestalt laws of organization (Koffka,
1935). In this framework, auditory scene analysis is divided into two
classes of processes, dealing with the perceptual organization of simul-
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taneously (i.e., concurrent) and sequentially occurring acoustic
elements, respectively. These processes are responsible for grouping
and parsing components of the acoustic mixture to construct perceptual
representations of sound sources, or ‘auditory objects’, according to
principles such as physical similarity, temporal proximity, and good
continuation. For example, sounds are more likely to be assigned to
separate representations if they differ widely in frequency, intensity,
and/or spatial location. In contrast, sound components that are harmon-
ically related, or that rise and fall in intensity together, are more likely
to be perceptually grouped and assigned to a single source. Many of
these processes are considered automatic or ‘primitive’ since they can
be found in infants (Winkler et al., 2003) and animals such as birds
(Hulse et al., 1997, MacDougall-Shackleton et al., 1998) and monkeys
(Fishman et al., 2001). The outcome of this pre-attentive analysis may
then be subjected to a more detailed analysis by controlled (i.e., top–
down) processes. While the pre-attentive processes group sounds based
on physical similarity, controlled schema–driven processes apply prior
knowledge to constrain the auditory scene, leading to perceptions that
are consistent with previous experience. As such, schema–driven pro-
cesses depend on both the representations of previous auditory
experience acquired through learning, and a comparison of the incom-
ing sounds with those representations. The use of prior knowledge is
particularly useful during adverse listening situations, such as the cock-
tail party situation described above. In an analogous laboratory
situation, a sentence’s final word embedded in noise is more easily
detected when it is contextually predictable than when it is unpredict-
able (e.g., “His plan meant taking a big risk.” as opposed to “Jane was
thinking about the oath.”) (Pichora-Fuller et al., 1995). Thus, schema–
driven processes provide a mechanism for resolving perceptual ambi-
guity in complex listening situations.

Deficits in listeners’ aptitude to perceptually organize auditory input could
have dramatic consequences on the perception and identification of complex
auditory signals such as speech and music. For example, impairment in the
ability to adequately separate the spectral components of sequentially and/or
simultaneously occurring sounds may contribute to speech perception prob-
lems often observed in older adults (Alain et al., 2001, Divenyi and Haupt,
1997a, 1997b, 1997c, Grimault et al., 2001) and in individuals with dyslexia
(Helenius et al., 1999, Sutter et al., 2000). Hence, understanding how the
brain solves complex auditory scenes that unfold over time is a major goal for
both psychological and physiological sciences. Although auditory scene anal-
ysis has been investigated extensively for almost 30 years and there have been
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several attempts to use computer models to simulate or reproduce the phe-
nomena found in an increasingly extensive literature, major gaps remain
between psychoacoustic research and neurophysiological research. This chap-
ter is an attempt to bridge together findings from different disciplines in
hearing sciences. I briefly review neurophysiological studies in both animals
and humans that provide important insights into the neural basis of auditory
scene analysis in general and in speech separation in particular. I then present
some preliminary data that illustrate a new neural correlate of speech
segregation.

2 BIOLOGICAL FOUNDATION OF AUDITORY
SCENE ANALYSIS

The neurobiological foundation of auditory scene analysis has received
considerable attention over the last decade. Evidence from single cell record-
ings shows that frequency periodicity, upon which concurrent sound
segregation is partly based, is reflected within the patterns of afferent spike
trains (Bodnar and Bass, 1999, Cariani and Delgutte, 1996a, 1996b, Keilson
et al., 1997, Palmer, 1990, Sinex et al., 2002). Multi-unit recordings in non-
human primates have also revealed a distinct pattern of neural activity in
primary auditory cortex associated with conditions that promote sequential
auditory stream formation (Fishman et al., 2001). This suggests that both
spectral and temporal transitions between successive stimuli are represented
within the primary auditory cortex. Although these results suggest early bot-
tom–up (stimulus–driven) processes in auditory scene analysis,
representations of incoming acoustic information in the ascending auditory
pathway are probably not sufficient for the detection and identification of dif-
ferent sound objects. Griffiths and Warren (Griffiths and Warren, 2002) argue
that the discrimination and identification of auditory objects requires addi-
tional computations that follow the initial processing in the ascending
pathway and primary auditory cortex, suggesting that these computations
might be carried out in the planum temporale.

In addition, it has been proposed that identifying the content (what) and
the location (where) of sound in the environment may be functionally segre-
gated in a manner analogous to the ventral (what) and dorsal (where)
pathways in the visual modality (Rauschecker, 1997, Rauschecker and Tian,
2000). This idea has received considerable support from neuroanatomical
(Romanski and Goldman-Rakic, 2002, Romanski et al., 1999) and neurophys-
iological studies in nonhuman primates (Rauschecker, 1997, 1998,
Rauschecker and Tian, 2000, Tian et al., 2001), as well as lesion (Adriani et
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al., 2003, Clarke et al., 1996, Clarke et al., 2000, Clarke et al., 2002) and
neuroimaging (Alain et al., 2001, Maeder et al., 2001) studies in humans.
Results from a recent meta-analysis of studies employing either positron
emission tomography (PET) or functional magnetic resonance imaging
(fMRI) provide further support for a dual pathway model of auditory attribute
processing (Arnott, Binns, Grady, and Alain, In press). In that analysis, most
studies employing tasks that required judgments about sound location
reported activation in inferior parietal cortex as well as superior frontal gyrus.
In comparison, most studies involving the processing of sound identity (e.g.,
phoneme discrimination, pitch discrimination etc.) reported activation in the
anterior portion of the temporal lobe and the inferior frontal gyrus. While neu-
roimaging studies in humans have identified a number of regions that may
contribute to auditory scene analysis, little is known about the time course of
these neural events and how they relate to phenomenological experience.

2.1 Event–Related Brain Potential Studies of Auditory
Scene Analysis

Recording human event–related brain potentials (ERPs) is a powerful
measure for examining how auditory scene analysis unfolds over time
because this technique allows for the examination of neural activity within
hundreds of milliseconds after the presentation of a sound either within or
outside the focus of attention. Consequently, ERPs can be used to evaluate the
effect of variables such as attention (Alain and Izenberg, 2003, Hillyard et al.,
1973, Martin et al., 1997) and learning (Shahin et al., 2003, Tremblay et al.,
1997, Wayman et al., 1992). Basically speaking, ERPs reflect the synchro-
nous activity from large neuronal ensembles that are time–locked to sensory
or cognitive events. Auditory ERPs therefore represent the journey of acoustic
information as it ascends the auditory system from the cochlea through the
brainstem to the primary auditory cortex and on to higher auditory cortical
areas. Brainstem auditory evoked potentials occur between 1 and 10 ms after
stimulus onset. Middle–latency evoked potentials arise between 10 and 50 ms
after stimulus presentation and are thought to reflect the activity of the pri-
mary auditory cortex. Long–latency evoked potentials take place after 50 ms
and include the P1, N1, and P2 wave. The N1–P2 complex is thought to be of
particular theoretical interest since it is related to signal detection, and is
present only when a transient auditory stimulus is audible. However, the con-
scious identification of an auditory event is often associated with an
additional late positive wave peaking between 250 and 600 ms post–stimulus,
referred to as the P300 or P3b (Hillyard et al., 1971, Martin et al., 1997, Para-
suraman and Beatty, 1980, Parasuraman et al., 1982).



Chapter 3: Speech separation: Further insights 17

2.2 The mistuned harmonic paradigm

One way of investigating the neural underpinnings of concurrent sound
segregation is by means of the mistuned harmonic paradigm. In such a para-
digm, the listener is usually presented with two successive stimuli, one
comprised of entirely harmonic components, the other with a mistuned har-
monic. The task of the listener is to indicate which one of the two stimuli
contains the mistuned harmonic. Several factors influence the perception of
the mistuned harmonic including degree of inharmonicity, harmonic number

Figure 3.1. Group mean event–related brain potentials elicited by complex sounds that had all
harmonics in tune or had the second harmonic shifted upward by 4% or 16% of its original
value. The gray rectangle illustrates sound duration. S refers to stimulus onset. Negativity is
plotted upward.
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Figure 3.2. A) Group mean difference waves between event–related brain potentials elicited
by complex sounds that have all harmonics in tune and by sounds with the second harmonic
shifted upward by 4, 8, or 16% of its original value. The gray rectangle illustrates sound dura-
tion. S refers to sound onset. Each tick marks a 200-ms interval. B) Relation between
participants’ likelihood to report perceiving two auditory objects and object–related negativity
(ORN) and P400 amplitudes. Note that the amplitude of the neuroelectric responses was nor-
malized so that brain responses and performance could be displayed on the same scale. C)
Dipole source modeling of the ORN. RV = residual variance of the model. In the present con-
text, the low RV indicates a very good fit of the data. The darker grey in the contour map (upper
right) indicates greater negativity.

and sound duration (Hartmann et al., 1990, Lin and Hartmann, 1998, Moore
et al., 1985).

In a series of experiments, Alain et al. (2001) measured ERPs to loud-
ness–matched complex sounds composed of either all tuned harmonics (or
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“partials”) or multiple tuned and one mistuned harmonic. On each trial, par-
ticipants indicated whether they heard a single sound (i.e., a regular “buzz” at
a pitch equivalent to the fundamental) or two sounds (i.e., the buzz plus a sep-
arate sound with a pure–tone quality at the frequency of the mistuned
harmonic). In this context, the mistuned harmonic might be analogous to the
presence of a secondary voice related to another fundamental frequency.
When the harmonic in the complex sound was mistuned from its original
value by more than 4%, listeners heard it as a separate tone.

This perception of multiple, simultaneous auditory objects was accompa-
nied by a negative displacement in the waveform that we named the “object–
related negativity” (ORN). The ORN overlaps in time with the N1 and P2
deflections (see Figures 3.1 and 3.2). Moreover, the ORN amplitude corre-
lated with perceptual judgment, being greater when participants reported
hearing two distinct perceptual objects (the buzz and the tone). It is observed
in school-aged children (Alain et al., 2003) and can be recorded for sounds
that are segregated based on location rather than harmonic cues (Johnson et
al., 2003).

The ORN can be recorded for stimuli that are unattended, such as when
participants ignore the stimuli and read a book of their choice (Alain et al.,
2001) or watch a subtitled movie (Alain et al., 2002). The fact that the ORN
can be recorded even when participants are not attending to the stimuli is
consistent with the proposal that concurrent sound segregation may occur
independently of a listener’s attention. However, these findings should be
interpreted with caution because, in these studies, listener attention was not
well controlled. For example, participants were required to take part in a
primary visual activity and to ignore the auditory stimuli, but little effort was
made to ensure that they complied with these instructions. Since there was no
objective measure of attention, the possibility that the participant’s attention
may have occasionally wandered to the auditory stimuli cannot be ruled out.
In a more recent study, we examined the effects of attention on the neural pro-
cesses underlying concurrent sound segregation through the manipulation of
auditory task load (Alain and Izenberg, 2003). Participants were asked to
focus their attention on tuned and mistuned stimuli presented to one ear (e.g.,
left) and to ignore similar stimuli presented to the other ear (e.g., right). For
both tuned and mistuned sounds, long (standard) and shorter (deviant) dura-
tion stimuli were presented to both ears. Auditory task load was manipulated
by varying task instructions. In the easier condition, participants were asked
to press a button for deviant sounds at the attended location, irrespective of
tuning. In the harder condition, participants were further asked to identify
whether the targets were tuned or mistuned. Participants were faster in detect-
ing targets defined by duration only than by both duration and tuning. More
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importantly, at the unattended location mistuned stimuli generated an ORN
whose amplitude was not affected by task difficulty. These results provide
strong support for the proposal that concurrent sound segregation can take
place independently of listener attention.

The ORN amplitude is usually largest at central and frontocentral sites and
inverts polarity at the mastoid sites, consistent with generators located in the
supratemporal plane within the Sylvian fissure. Dipole source modeling sug-
gests that the ORN sources are inferior and medial to N1 sources (Alain et al.,
2001), indicating that neurons activated by co-occurring auditory stimuli are
different from those activated by stimulus onset. In an effort to further iden-
tify the neural substrates of concurrent sound segregation, we measured
middle latency auditory evoked responses (i.e., Na and Pa) which are gener-
ated primarily within the primary auditory cortex (Liegeois-Chauvel et al.,
1995). The Pa wave at about 30 ms was significantly larger when the third
harmonic of a 200 Hz complex sound was mistuned by 16% of its original
value (Dyson and Alain, 2004). In a manner similar to the ORN, the enhanced
Pa amplitude was also paralleled by an increased likelihood of participants
reporting the presence of multiple, concurrent auditory objects. These results
are consistent with an early stage of auditory scene analysis in which acoustic
properties such as mistuning act as pre-attentive segregation cues that can
subsequently lead to the perception of multiple auditory objects. It also sug-
gests that the primary auditory cortex (the main source of the Pa wave)
represents inharmonicity and therefore may play an important role in the ini-
tial stage of concurrent sound segregation.

Distinguishing simultaneous auditory objects is also accompanied by a
late positive wave (P400), which has a widespread scalp distribution. Like the
ORN, its amplitude is correlated with perceptual judgment, being larger when
participants perceive the mistuned harmonic as a separate tone. However, in
contrast with the ORN, this component is present only when participants are
required to attend to the stimuli and respond whether they heard one or two
auditory stimuli. Using sounds of various duration, Alain et al. (2002) showed
that the P400 can be dissociated from motor processes. Thus, whereas the
ORN appears to be more associated with automatic processing, the P400
seems to be more related to controlled processes.

This sequence of neural events underlying the perception of simultaneous
auditory objects is consistent with Bregman’s account of auditory scene anal-
ysis. Specifically, harmonically related partials are grouped together into one
entity, while the partial that is sufficiently mistuned stands out of the complex
as a separate object. The ORN thus may be viewed as indexing the automatic
detection of the mistuned harmonic from a prediction based upon the
expected harmonics of the incoming stimulus. This is consistent with psycho-
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physical data, which argue for a pattern–matching process that attempts to
adjust a harmonic template (or sieve), defined by a fundamental frequency, to
fit the spectral pattern (Goldstone, 1978, Hartmann, 1996, Lin and Hartmann,
1998). When a harmonic is mistuned by a sufficient amount, a discrepancy
occurs between the perceived frequency and that frequency expected on the
basis of the template. The purpose of this pattern–matching process would be
to signal to higher auditory centers that more than one auditory object might
be simultaneously present in the environment. Within this context, the P400
component may index a schema–driven process involved in scene analysis.
This proposal is supported by findings showing that the P400 amplitude, like
perception of the mistuned harmonic as a separate object, decreases when
stimuli are presented frequently (Alain et al., 2001).

The ORN shows some similarities in latency and amplitude distribution
with another ERP component called the mismatch negativity (MMN). The
MMN is elicited by the occurrence of rare deviant sounds embedded in a
sequence of homogenous standard stimuli (Näätänen, 1992, Picton et al.,
2000). Like the ORN, the MMN has a frontocentral distribution and its
latency peaks at about 150 ms after the onset of deviation. Both ORN and
MMN to acoustic stimuli can be recorded while listeners are reading or
watching a video and therefore are thought to index bottom–up processing of
auditory scene analysis. Despite the similarities, these two ERP components
differ in three important ways. One of the most crucial differences between
these two components is that while MMN is highly sensitive to the perceptual
context, the ORN is not. That is, the MMN is elicited only by rare deviant
stimuli whereas the ORN is elicited by mistuned stimuli regardless of whether
they are presented occasionally or frequently (Alain et al., 2001). Thus, the
MMN reflects a mismatch between the incoming auditory stimulus and what
is expected based on recently occurring stimuli, whereas the ORN indexes a
discrepancy between the mistuned harmonic and what is expected on the basis
of the current stimulus. Thus, the MMN can be viewed as an index of sequen-
tial integration because its elicitation depends on the extraction of regularities
over several seconds. In comparison, the ORN is thought to index concurrent
sound segregation and depends on an online spectral analysis of the incoming
acoustic waveform.

The ORN and MMN can also be distinguished based on their scalp distri-
bution. Scalp distributions and dipole source modeling are important critera in
identifying and distinguishing between ERP components. Figure 3.3 shows
the ORN and MMN amplitude distribution in the same group of participants.
The MMN was elicited by shorter duration stimuli and showed a more fron-
tally distributed response compared with the ORN elicited by complex sounds
with the third harmonic mistuned by 16%. Differences in amplitude distribu-
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tion indicate that different neural networks are responsible for concurrent and
sequential sound segregation. Lastly, the ORN and MMN appear to be differ-
entially sensitive to attentional manipulation. In a recent study, we showed
that the ORN was little affected by attention load whereas the MMN was
reduced in amplitude when the auditory task was more demanding (Alain and
Izenberg, 2003). The effects of selective attention on MMN amplitude have
been reported in many studies for a variety of deviant types (Alain and Arnott,
2000). This difference in attentional sensitivity may be related to the memory
system upon which the grouping processes depend. That is, sequential inte-
gration depends on the integration of acoustic information over several
seconds while concurrent sound segregation depends on the integration of
acoustic information within hundreds of milliseconds.

3 NEURAL CORRELATES OF SPEECH
SEPARATION

Early classical work with dichotic listening has shown that a listener’s
ability to understand speech depends on the acoustical factors that promote
the segregation of co–occurring speech stimuli into distinct sound objects. For
example, an increase in spatial separation between two concurrent messages
improves performance in identifying the task–relevant message (Bronkhorst
and Plomp, 1988, 1992, Spieth, Curtis, and Webster, 1954, Treisman, 1964).

Figure 3.3. Contour maps showing the amplitude distribution of the MMN and ORN within
the same group of participants. The MMN was elicited by short duration deviant sounds
whereas the ORN was recorded from complex sounds with the third harmonic mistuned by
16% of its original value. The darker grey indicates greater negativity. Note the difference in
the orientation of the contour lines between the two maps over the temporal lobe.
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Similarly, increasing the distance between the frequency bands of the two
messages improves an individual’s ability to attend to either of the messages
selectively (Spieth et al., 1954). Psychophysical studies have also shown that
when listeners are presented with two different vowels simultaneously, the
identification rate improves with increasing separation between the funda-
mental frequencies of the two vowels (Assmann and Summerfield, 1990,
1994, Chalikia and Bregman, 1989, Culling and Darwin, 1993). These behav-
ioural studies highlight the importance of differences in the perceptual
separation of competing voices.

We recently investigated the time course of neural activity associated with
concurrent vowel segregation (Alain et al., Submitted; Reinke et al., 2003),
using a paradigm similar to that of Assmann and Summerfield (1994). Partic-
ipants were informed that on each trial two phonetically different vowels
would be presented simultaneously and they were asked to identify both by
pressing the corresponding keys on the keyboard as the difference in varied
from trial to trial. As previously reported in the behavioral literature (Ass-
mann and Summerfield, 1990, 1994, Chalikia and Bregman, 1989), we found
that a listener’s ability to identify both vowels improved by increasing the dif-
ference in between the two

Figure 3.4. Proportion of correctly identified vowels as a function of f 0.
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vowels (Figure 3.4). We also found that the listener’s ability to identify two
concurrent vowels improved with training (Reinke et al., 2003), and that
improvement was associated with decreased N1 and P2 latencies and an
enhancement in P2 amplitude. These learning–related changes in sensory
evoked responses may reflect functional and/or structural changes in auditory
cortices that could reflect an increase in listener expertise with such stimuli.

The correct identification of concurrent vowels depends on a listener’s
ability to detect the presence of two signals, identify these individual signals
and to initiate the appropriate response set. With respect to these processes,
we found two ERP signatures that may underlie the detection and identifica-
tion of concurrent vowels, respectively (Figure 3.5). The first ERP
modulation was a negative wave that was superimposed on the N1 and P2
waves, and peaked around 140 ms after sound onset. This component was
maximal over midline central electrodes and showed similarities in latency
and amplitude distribution with the ORN. As with the ORN, the amplitude of
this component was related to the detection of the discrepancy between
signaling to higher auditory centers that two sound sources were present. In
the case where is zero, some of the harmonics may activate similar popula-
tions of neurons responding to the temporal characteristics of the steady state
vowel and/or the “place” on the cortex (Ohl and Scheich, 1997), whereas dif-
ferent populations may be activated as becomes larger.

The second ERP component associated with concurrent vowel segregation
was a negative wave that peaked at about 250 ms after sound onset and was
larger over the right and central regions of the scalp. As mistuned harmonics
do not generate this late modulation, it was likely related to the identification
and categorization that followed the automatic detection of the two constitu-
ents of the double vowel stimuli. The first negative modulation was present
whether or not the participants were involved in identifying the two constitu-
ents of the double–vowel stimulus. This suggests that detecting whether two
different vowels were present in the mixture occurred automatically. The sec-
ond negative peak was present only when listeners were required to make a
perceptual decision. This component may index a matching process between
the incoming signal and the stored representation of the vowels in working
memory. Given that vowels are over–learned, the second modulation may
also reflect the influence of schema–driven processes in vowel identification.
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Figure 3.5. Group mean difference waves between event–related brain potentials elicited by
two vowels sharing the same fundamental frequency or those recorded when the two vowels
were separated by .25 or 4 semitones. Contour maps illustrate the amplitude distribution of the
early (EN1 and EN2) and late (LN) negativity. The EN1, EN2, and LN peak around 150, 250,
and 650 ms after sound onset. Negativity is plotted downward. FCZ = FrontoCentral electrode
at the midline. The darker grey in the contour maps indicates greater negativity.

4 SUMMARY AND CONCLUSION

A fundamental problem faced by the human auditory system is the segre-
gation of concurrent speech signals. To discriminate between individual
voices, listeners must extract information from the composite acoustic wave
reflecting summed activation from all the simultaneously active voices. In this
chapter, we showed that an observer’s ability to identify two different vowels
presented simultaneously improved by increasing the fundamental frequency

separation between the vowels. Recording of brain event–related poten-
tials for stimuli presented during attend and ignore conditions revealed
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activity (i.e., object–related negativity, ORN) between 130 and 170 ms after
sound onset that coded differences. Another, more right–lateralized nega-
tive wave maximal at 250 ms accompanied the improvement in vowel
identification. This sequence of neural events is consistent with a multistage
model of auditory scene analysis in which the spectral pattern of each vowel
constituent is first extracted and then matched against representations of those
vowels in working memory. We found a different pattern of neural activity
when individuals were required to identify concurrent vowels than when they
were asked whether one or two auditory events were present in a mixture
using the mistuned harmonic paradigm (Alain et al., 2001, Alain et al., 2002).
These differences may be related to observer expertise with the speech mate-
rial, i.e., the processing of vowels may automatically engage both low–level
and schema–driven processes. Our findings highlight the need to further
investigate and test models of auditory perception and cognition using more
ecologically valid stimuli.
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1 INTRODUCTION

Arguably, the most important barrier to widespread use of automatic
speech recognition systems in real–life situations is their present inability to
separate speech of individual speakers from other sound sources: other speak-
ers, acoustic clutter, background noise. We believe that critical examination
of biological auditory systems with a focus on “reverse engineering” these
systems, can lead to discovery of new functional principles of information
representation and processing that can subsequently be applied to the design
of artificial speech recognition systems.

From our experiences in attempting to understand the essentials of how the
auditory system works as an information processing device, we believe that
there are three major areas where speech recognizers could profit from incor-
porating processing strategies inspired by auditory systems. These areas are:
1) use of temporally–coded, front–end representations that are precise, robust,
and transparent, and which encode the fine temporal (phase) structure of peri-
odicities below 4 kHz, 2) use of early scene analysis mechanisms that form
distinct auditory objects by means of common onset/offset/temporal contigu-
ity and common harmonic structure (F0, voice pitch), and 3) use of central
phonetic analyzers that are designed to operate on multiscale, temporally–
coded, autocorrelation–like front–end representations as they present them-
selves after initial object formation/scene analysis processing. This paper will
address the first two areas, with emphasis on possible neural mechanisms
(neural timing nets) that could exploit phase–locked fine timing information
to separate harmonic sounds on the basis of differences in their fundamental
frequencies (harmonicity).

Psychoacoustical evidence suggests that the auditory system employs
extremely effective low–level, bottom–up representational and scene analysis
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strategies to enable individual sound sources to perform this separation. Neu-
rophysiological evidence suggests that the auditory system utilizes interspike
interval information for representing sound in early stages of auditory pro-
cessing. Interval–based temporal codes are known to provide high–quality,
precise, and robust representations of stimulus periodicities and spectra over
large dynamic ranges and in adverse sonic environments.

We have recently proposed neural timing networks that operate on tempo-
rally–coded inputs to carry out spike pattern analyses entirely in the time
domain. These complement connectionist and time–delay architectures that
produce “spatial”, atemporal patterns of element activations as their outputs.
In effect neural timing architectures provide neural network implementations
of analog signal processing operations (e.g. cross–correlation, autocorrelation,
convolution, cross–spectral product). The ubiquity of neural (tapped) delay
lines in the brain may mean that many signal processing operations are more
easily and flexibly implemented neurally using time domain rather than fre-
quency domain and/or discrete feature detection strategies.

We have found that simple recurrent timing nets can be devised that oper-
ate on temporal fine structure of inputs to build up and separate periodic
signals with different fundamental periods (Cariani, 2001a). Simple recurrent
nets consist of arrays of coincidence detectors fed by common input lines and
conduction delay loops of different recurrence times. A processing rule facili-
tates correlations between input and loop signals to amplify periodic patterns
and segregate those with different periods, thereby allowing constituent wave-
forms to be recovered. The processing is akin to a dense array of adaptive–
prediction comb filters. Based on time codes and temporal processing, timing
nets constitute a new, general strategy for scene analysis in neural networks.
The nets build up correlational invariances rather than using features to label,
segregate and bind channels: they provide a possible means by which the fine
temporal structure of voiced speech might be exploited for the speaker separa-
tion and enhancement.

2 PITCH AND AUDITORY SCENE ANALYSIS

Perhaps the most basic function of a perceptual system is to coherently
organize the incoming flux of sensory information into separate stable objects
(Bregman, 1981, 1990, Handel, 1989, Mellinger and Mont-Reynaud, 1996).
In hearing, sound components are fused into unified objects, streams and
voices that exhibit perceptual attributes, such as pitch, timbre, loudness, and
location. Common periodicity, temporal proximity (onset, duration, offset),
frequency, amplitude dynamics, phase coherence, and location in auditory
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space are some of the factors that contribute to fusions and separations of
sounds.

For concurrent sounds, common harmonic structure plays perhaps the
strongest role in forming unified objects and separating them (Mellinger and
Mont-Reynaud, 1996, Hartmann, 1988). As a rule of thumb, voices and musi-
cal instruments having different fundamental frequencies (F0s) can be easily
separated provided that their fundamentals differ by more than a semitone
(6%, the F0 separation of two adjacent keys on a piano). Harmonic complexes
with different fundamentals produce strong pitches at their fundamentals
(even when the fundamental is not present in the power spectrum or when fre-
quencies near the fundamental are masked out with noise). The mechanisms
underlying pitch perception and auditory object formation therefore appear to
intimately linked.

3 PROBLEMS WITH TRADITIONAL CHANNEL-
BASED CODING OF THE AUDITORY STIMULUS

Traditionally, following the formidable intellectual synthesis of Helmholz
and Fletcher, the auditory system has been conceived in terms of a central
analysis of running frequency–domain representations of the stimulus power
spectrum. Almost all extant front–end representations for automatic speech
recognizers follow this assumption that a magnitude time–frequency spec-
trograph–like representation of the speech signal crudely mirrors the
processing taking place in the central auditory system. Although is often con-
ventionally assumed that the cochlea itself implements a array of narrowly–

Figure 4.1. Discharge rate of a low spontaneous rate, high threshold auditory nerve fiber as a
function of tone frequency and SPL. From Rose, 1971 (Rose et al, 1971).
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Figure 4.2. Driven rate–place profiles for a population of cat auditory nerve fibers of different
characteristic frequencies in response to a 1 kHz tone presented at three levels. (Irvine, 1986)
Data originally from Kim and Molnar (1979).

tuned bandpass filters that then subsequently create tonotopically–organized-
frequency maps in the central auditory system, this picture of spectral coding
presents many profound difficulties in light of what we know about neural
response patterns at the level of the auditory nerve and the auditory CNS.

First, it has been known for decades now that the frequency response areas
of auditory nerve fibers broaden dramatically as stimulus levels exceed 60 dB
SPL (where tones below a fiber’s characteristic frequency lie in the broad
“tail” region of the fiber’s tuning curve). A direct consequence of this is that
simple representations of the stimulus spectrum based upon profiles of firing
rates (whether absolute or driven) across whole neural populations perform
best at low SPLs (<< 50 dB SPL). Such representations will be degraded at
moderate to high SPLs as firing rates of fibers saturate. This is in marked con-
trast to auditory percepts, which almost invariably improve in precision and
reliability at higher stimulus levels. In functional terms, this tonotopy is only
viable as a scheme for encoding fine spectral distinctions at low sound levels.
For frequencies more important for music and speech tonotopy is better con-
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ceptualized as “cochleotopy” – as a reflection of the most direct connections
to the sensory receptor surface, rather than as a vehicle for frequency coding
in its own right. Throughout the auditory neurophysiology literature, this gen-
eral problem with the degradation of tonotopy, which is most acute for best
frequencies below a few kHz, is seen at all levels of auditory processing from
periphery to cortex. Two general (arguably ad-hoc) remedies have been pro-
posed to save the rate–place picture: 1) the selective use of the fewer and
fewer neural elements that exist that have higher and higher rate–thresholds
and therefore dynamic ranges better suited to encode higher stimulus levels,
and 2) reliance on lateral inhibition and the locations of shoulders of popula-
tion–wide excitation patterns to infer the stimulus spectrum. Although these
strategies can be made to work in particular cases (e.g. 2AFC discrimination),
it is hard to envision how such representations would work in more general
contexts to infer the spectra of novel stimuli and multiple sounds. It is even
harder to imagine why pitch and timbre percepts based on such representa-
tions and analyses would be highly invariant with respect to stimulus
intensity, with jnd’s even improving at levels where units with appropriately
high thresholds are relatively few.

Traditional approaches to auditory scene analysis also operate using the
central spectrum assumption, that auditory objects are best described in terms
of patterns of activation amongst frequency channels. In this view, the task of
an auditory separation mechanism is channel segregation and binding, i.e. to
label and segregate frequency channels according to pitch–related features
(e.g. Meddis and Hewitt, 1992) and then to bind them together to form sepa-
rate objects, streams, and voices.

4 TEMPORAL REPRESENTATION OF AUDITORY
STIMULI

Historically, conceptions of the auditory system as a temporal pattern
(periodicity) analyzer have developed alongside those that cast it as a fre-
quency analyzer (Boring, 1942, Cariani, 1999, de Cheveigné, 2004). When
one examines patterns of neural activity in the auditory nerve array (Fig. 4.4),
one is immediately struck by the ubiquity of the temporal patterning of activ-
ity. In essence, the stimulus impresses its fine time structure on the temporal
discharge patterns of multitudes of nerve fibers.

Periodicity–based theories of auditory representation account for the
pitches of complex tones in terms of population–based all–order interspike
interval statistics (Cariani and Delgutte, 1996, Cariani, 1999). The most com-
mon sets of intervals present in the whole population at any given time predict
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Figure 4.3. Traditional strategies for auditory scene analysis operate in the frequency domain
to assign different sets of frequency channels to different auditory objects.

the pitch that will be heard. This account encompasses pitches evoked by pure
and complex tones that have periodicities (frequencies, fundamentals) below
the limits of strong phase–locking (~4 kHz). The one exception of which we
are aware are click rate pitches produced by click trains of alternating polar-
ity, where the click rate pitch is heard an octave above the fundamental.
Periodicity–based representations effectively explain the frequency limits of
musical tonality (octave matching, musical interval recognition), which only
exists up to around 4 kHz (Burns, 1999).

For example, the familiar Big Ben melody can be played in different
descending registers, beginning around 10 kHz. At about 4 kHz, the melody
becomes recognizable. The level–invariant nature of low–frequency hearing
(vs. the level–dependent character of high frequency hearing) strongly sug-
gests that low– and high–frequency hearing rely on different neural
mechanisms: a temporal mechanism for periodicities below 4 kHz, and an
atonal, level–dependent mechanism for higher frequencies. Lower frequency
spectra are also effectively represented in population–interval distributions.
The reason is that each partial impresses its temporal structure on the tempo-
ral discharge patterns of fibers whose CFs are closest to it in frequency. The
result is that the stimulus partitions cochlear territories according to the rela-
tive magnitudes of the various partials. This is illustrated in the ANF
responses depicted in Figure 4.5, where dominant harmonics (associated with
vowel formants) drive different CF territories. As a consequence, when all of
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Figure 4.4. Temporal discharge patterns of auditory nerve fibers. Peristimulus time histogram
(PSTH) responses of 52 cat auditory nerve fibers to a single-formant vowel (F0: 80 Hz, F1 =
640 Hz, l00x, 60 dB SPL). PSTH baselines indicate fiber characteristic frequencies.

the intervals are summed together into the population — interval distribution,
the distribution resembles the autocorrelation function of the stimulus (for fre-
quencies up to the limits of phaselocking). Place per se is therefore not strictly
necessary to encode stimulus spectrum — each vowel with its characteristic
formant structure and power spectrum produces a characteristic population–
interval representation (that is precise and level–invariant). It is therefore pos-
sible and desirable to collapse correlogram–like representations across
frequency in order to use the second dimension for time.

The result is an autocorrelogram (Fig. 4.6), which depicts the running
autocorrelation of the stimulus. Although it is similar to a spectrogram in
many respects, the autocorrelogram prominently depicts the dominant period-
icities of speech sounds, i.e. voice pitch. We believe that effective front–end
representations for speech analysis should represent those stimulus dimen-
sions that are most prominent in speech perception, which we take to be voice
pitch (dominant periodicity), vowel quality (spectrum), fast amplitude and
frequency patterns (dynamic aspects of timbre), and the manner in which they
are grouped together to form discrete voices and objects. In contrast with
spectrograms, the autocorrelogram effectively depicts invariants associated
with voice pitch, which is crucial for speaker separation and enhancement.
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Figure 4.5. Responses of cat auditory nerve fibers to a multiformant vowel (/da/). Vertical
axis: fiber CF (kHz), horizontal axis: peristimulus time (ms). Dominant harmonics in the
respective formant regions impress their temporal structure on swaths of fibers, thereby parti-
tioning cochlear (CF) territories. The production of intervals associated with the different
partials thus reflects their relative magnitudes. From Seecker-Walker and Searle (1990), who
analyzed data from Young and Sachs (1979).

5 PHASE–EFFECTS IN F0–BASED SEPARATION

It thus appears to us that the vast majority of the information that is uti-
lized for perception of music and speech is temporal in nature. If we take this
observation seriously, then new ways of thinking about the nature of auditory
objects immediately present themselves. The ubiquity of phase–locking in
early auditory processing means that spike timing patterns reflect the fine
time structure (and phase structure) of the stimulus. This information is there-
fore potentially available for scene analysis mechanisms.

Although perception of pitch and timbre of stationary lower–frequency
stimuli (the psychophysicists would say of resolved harmonics) is famously
phase–insensitive, auditory grouping mechanisms are highly sensitive to
abrupt phase changes. Harmonic complexes with F0s more than 2 semitones
separate easily into two auditory objects with two distinct low (F0) pitches
and timbres. We shall look at the double vowel case in more detail momen-
tarily. Kubovy has demonstrated that abrupt changes in the phase and/or
amplitude of a harmonic is sufficient to cause that harmonic to “pop–out”.
Each of these examples, including the separation of mistuned harmonics from
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complexes (see Kubovy, 1981, and Darwin and Gardner, 1986), suggests a
separation mechanism based on a period-by-period comparison. A mecha-
nism that compared the waveform (spike pattern) of a preceding period with
that of a subsequent period would register an ongoing disparity, and the form
of this disparity would be that of the pure tone component. Assuming that
pure tones are encoded temporally, then the auditory CNS would interpret this
spike pattern disparity as a pure tone.

Double vowels with same and different fundamental periods would pre-
sumably be analyzed by this mechanism. The psychophysics of their
separation and identification has been studied extensively (Summerfield and
Assmann, 1991, Assmann and Summerfield, 1990). Models had been pro-
posed (Meddis and Hewitt, 1992, de Chevigné, 1999), and their neural
responses had been investigated (Cariani and Delgutte, 1993, Cariani, 1995,
Palmer, 1988, 1992). When the two vowels have the same F0, they fuse into
one object, when the two F0s differ by a semitone or more, the vowels sepa-
rate. When the F0s are the same, listeners are able to correctly identify both
individual vowel constituents about half the time. For F0 separations of more
than a semitone, listeners improve by 15–20%. A mechanism that built up
recurrent temporal patterns would behave in a qualitatively similar way,

Figure 4.6. Population–interval representations of five synthetic vowels compiled from
responses of 50-100 cat auditory nerve fibers. A. Population autocorrelogram for a variable-F0
vowel/ae/, F0= 100-126 Hz. The dark interval band closely follows the fundamental period. B–
C. Cross sections of the autocorrelogram are population–interval distributions for 60 ms
stimulus segments. The largest interval peak corresponds to voice pitch, while patterns of short
intervals (< 5 ms) reflect dominant harmonics (formant structure). D–H. Population–interval
distributions for five synthetic vowels, averaged over F0s 100-126 Hz.
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Figure 4.7. Phase and amplitude transients that cause individual harmonics to temporarily
“pop out” of harmonic complexes. Left: waveforms of harmonic complexes having abrupt
phase and amplitude shifts at 20 ms. Right: Subtraction of last two periods of the waveforms
from the first two (period-by-period deviation from perfectly periodic waveforms).

fusing the two patterns when they have the same fundamental period and sep-
arating them when they have different ones.
A visual analogy can be constructed by overlaying two transparencies with
arbitrary abstract patterns on them (e.g. random dots). When the transparen-
cies are moved together, the patterns fuse, when they are moved
independently, their respective patterns immediately separate. One intuits that
there is a mechanism that builds up the respective invariant patterns of dots in
the transparencies and integrates these images when they are translated spa-
cially. The mechanism will treat the two transparencies as one when the
relations of dots on each sheet is stable relative to the dots on the other. Like-
wise, it will find two sets of invariant relations when the sheets are moved
relative to each other — while relations between dots on the two transparen-
cies are rendered unstable and varying, those within a given sheet remain
stable. In the auditory case, the relations are between patterns of spikes asso-
ciated with the two vowels. The conventional visual scene analysis
explanation assumes representations of the patterns as sets of active feature
detectors (e.g. motion detectors, bug detectors) the scene analysis task being
to separate the features associated with the two dot patterns on the transparen-
cies. In the double vowel example, we know from neurophysiological
experiments and computer simulations that two vowels separated by a few
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Figure 4.8. Double vowel stimuli.

semitones in frequency drive the same neuronal frequency channels in the
auditory nerve. The spike timing information that encodes the two vowels is
temporally multiplexed in the same auditory nerve fibers (Figure 4.9). This
suggests that the auditory system must use phase/fine timing information to
separate the two vowels. Back to the visual case, since visual neurons also
“phase–lock” to moving images, it is not out of the realm of possibility that
the visual system utilizes spatial patterns of temporally–correlated spikes to
represent and separate forms in an analogous manner (Cariani, 2004, in
press). This temporal correlation hypothesis potentially explains why motion
is essential for vision: why visual forms disappear when their positions are
stabilized on the retina.

One possibility then is that auditory objects are first formed using a low–
level phase–sensitive mechanism that builds up periodic patterns and sepa-
rates divergent ones. Such a mechanism would operate on the temporal
coherence of fine time patterns (internal phase coherence) rather than detect-
ing discrete features and sorting channels on that basis. Once objects were
formed by such a mechanism, they would subsequently be analyzed by an
phase–insensitive mechanism (pitch, timbre, loudness, location). Recurrent
neural timing nets are an attempt to demonstrate how this strategy for scene
analysis could be implemented neurally.

We strongly believe that new information–processing models that focus
on functional principles are absolutely essential for long–term progress in
auditory neuroscience and speech recognition. In auditory neuroscience, it
seems likely that computational biophysical simulations aimed at accounting
for the input–output behavior of particular neuronal elements will not lead us
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Figure 4.9. Simulated auditory nerve response to a double vowel with F0s separated by a
semitone (6%). Information associated with the respective vowels is multiplexed in the time
domain. The situation is similar for larger F0 separations.

to the functional principles we need to understand how the auditory system
works as an information–processing system. In lieu of strong functional
hypotheses, the neurophysiologists will be left to creating ever larger catalogs
of neural responses. Audio separation and speech recognition should pay
attention to natural auditory systems, if only because these are still by far the
most effective sound processing and speech recognition devices on the planet.
Again the attention needs to focus on essential functional principles – which
aspects of auditory function produce the performances that we see.

To date, there have been only a few isolated attempts to exploit the power
of temporal codes in providing high–quality general–purpose auditory front–
ends for speech recognizers (Ghitza, 1992, 1988). In the last decade correlo-
grams have been used effectively to label and separate subsets of frequency
channels (Wang and Brown, 1999). While these efforts, in incorporating fine
timing information, represent a great improvement over purely spectral analy-
ses, it seems to us unlikely that the auditory system operates in this way to
bind together discrete frequency channels. When we contemplate the image of
spike activity in a simulated auditory nerve (Fig. 4.9) that uses broader, more
physiologically realistic cochelar filters rather than much narrower “auditory
filters” derived from (whole system) psychophysics, it seems immediately
obvious that there are no discrete, narrowly-tuned neural frequency channels
to be sorted. The situation is no better at higher levels of processing. Yet to be
produced is neurophysical evidence suggesting that two low-frequency pure
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tones 20% apart in frequency (easily heard as two discrete tones) will excite
separable populations of neurons in higher auditory stations. The means by
which the central auditory system achieves fine low-frequency discrimination
and selectivity remains a completely open (and largely neglected) question for
auditory neuroscience. It is difficult to envision how investigations of scene
analysis mechanisms at the cortical level can proceed without some prior
understanding of the precise nature of neural representations of periodicity
and spectrum at that level. On the other hand, well-constructed studies of neu-
ral scene analysis mechanisms (e.g. Sinex, 2002) could conceivably shed
precious light on the nature of these representations at higher centers.

In our view, temporal coding is not simply a special-purpose “hack”
to do F0-based scene analysis, but a fundamental organizing principle
of vertebrate auditory systems. Information processing in the auditory
system may well be based on fine timing information that our present
spectrographic representations throw away at an early stage. If neural
analysis of sound primarily involves time-domain operations then it
behooves us to explore similar strategies for sound analysis in artificial
systems. This line of thinking suggests wider and more general use of
correlograms and autocorrelograms for sound separation, front-end
representations, and even back-end recognition strategies. Ideally we
should use such representations in conjunction with processing strate-
gies that parallel human auditory scene analysis. Here the most
important mechanisms group sounds by temporal contiguity (common
onset/offset) and by common harmonicity (F0). When we have both
auditory representations and sound separation strategies that exploit the
temporal microstructure of sounds, then we should be well on our way
to developing much more robust bottom-up automatic speech recogni-
tion systems.

6 RECURRENT TIMING NETS

For these and other reasons, we have strived to develop new heuristics for
how auditory images might be formed and separated. Both feedforward and
recurrent networks we have been considered and their basic computational
properties were explored (Cariani, 2001a, 2001b). Neural timing nets demon-
strate how analog time–domain filtering operations could conceivably be
performed in neural network implementations. They expand the realm of pos-
sible signal–processing mechanisms available to nervous systems. We hope
they will have the effect of catalyzing new functional hypotheses for how
information could be represented, transmitted, multiplexed, broadcast, ana-
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lyzed, and integrated. These networks have also been investigated in the
context of music perception (Cariani, 2002), as possible approaches to tonal-
ity and rhythmic induction.

Recurrent timing networks were inspired in different ways by models of
stabilized auditory images (Patterson et al., 1995), neural loop models
(Thatcher and John, 1977), adaptive timing nets (MacKay, 1962), adaptive
resonance circuits (Grossberg, 1988), the precision of echoic memory, and the
psychology of temporal expectation (Jones, 1976, Miller and Barnet, 1993).
Although much is known about time courses of temporal integration that are
related to auditory percepts (pitch, timbre, loudness, location, object separa-
tion, and various masking effects), we currently have few good models for
how incoming information in the auditory periphery is integrated over time by
the central auditory system to form stabilized auditory percepts. If the infor-
mation involved is indeed temporally–coded, then architectures that store
temporal patterns in reverberating circuits eventually come to mind. One
envisions the signals themselves circulating in closed transmission loops or
regenerated via cellular recovery mechanisms. These temporal memory traces
(temporal echoic memories) would be compared with incoming patterns via
coincidence–detectors that compute temporal correlations. Neural representa-
tions would thus build up over time, dynamically creating sets of perceptual
expectations that could either be confirmed or violated. Periodic signals, such
as rhythms, would thereby create strong temporal expectancies (Cariani,
2002, Fraisse, 1978).

The simplest recurrent timing networks imaginable consist of a 1-D array
of coincidence detectors having common direct inputs (Figure 4.10). The out-
put of each coincidence element is fed into a recurrent delay line such that the
output of the element at time t circulates through the line and arrives tau milli-
seconds later (the signal that arrives back at time t is the one that was emitted

Figure 4.10. Simple recurrent timing net.
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at t–tau). A processing rule governs the interaction of direct and circulating
inputs.

In their development the networks have evolved from simple to more com-
plex. In the first simulations (Cariani, 2001b), binary pulse trains (resembling
spike trains) with repeated, randomly selected pulse patterns (e.g. 100101011-
100101011-100101011...) were passed through the network. For each time
step, incoming binary pulses were multiplied by variable–amplitude pulses
arriving through the delay loop. In the absence of a coincidence with a circu-
lating pulse, the input pulse was fed into the delay loop without facilitation.
When coincidences between incoming and circulating pulses occurred, the
amplitude of the circulating pulse was increased by 5% and the pulse was fed
back into the loop. It was quickly realized that such networks rapidly build up
any periodic pulse patterns in their inputs, even if these patterns are embedded
amidst many other pulses. A periodic pattern invariably builds up in the delay
loop whose recurrence time matches its repetition time. Thus, recurrent time
patterns are repeatedly correlated with themselves to build up to detection
thresholds. In effect, these autocorrelating loops dynamically create matched
filters from repeating temporal patterns in the stimulus. In this manner, tem-
poral–pattern invariances are enhanced relative to uncorrelated patterns – the
network functions as a pattern amplifier. When two repeating temporal pat-
terns each with its own repetition period were summed together and presented
to such nets, the two patterns emerged in the two different delay loops that
had recurrence times that corresponded to the repetition periods of the pat-
terns. Although the proportional facilitation rule distorted signal amplitudes,
the temporal patterns of pulses corresponding to the two rhythms could be
recovered in the circulating waveforms. A neural network can therefore carry
out an analog–style separation of signals in the time–domain. To do this,
inputs need to be temporally coded, processing elements must have suffi-
ciently narrow coincidence windows, delays must be relatively precise, and
processing rules must be judiciously chosen.

7 SEPARATION OF DOUBLE VOWELS

Although binary pulse trains resemble spike trains of individual neurons,
most real neural information processing appears to be carried out by large
ensembles of neurons working in concert. Subsequent simulations (Cariani,
2001b) therefore used positive real–valued input signals that qualitatively
resemble neural post–stimulus time histograms (e.g. time series of spike
counts that would be produced by an ensemble of similar neural elements
whose discharges were stimulus–locked). Proportional facilitation was



46 Speech Separation

replaced by a processing rule that adaptively adjusted the output signal in a
more graceful and less distorting manner. Multichannel implementations sub-
sequently processed the double vowels using an auditory nerve front end with
24 CF channels. The instantaneous spike rate of each frequency channel was
fed into an array of delay loops and the autocorrelations of the circulating
waveforms in corresponding delay loops were combined to theroduce simu-
lated population–interval distributions.

Our current single–channel implementation uses a simple error–adjust-
ment processing rule that can operate on signals with both positive and
negative values. describes the
input-output function of each processing element. determines the rate of
adjustment, and its dependence on ensures that shorter loops
are not favored.

To a signal processing engineer, the net somewhat resembles a tem-
porally-coded neural implementation of a bank of comb filters, albeit
ones with very short (1-2 period) temporal integration times. It would
be a mistake to dismiss them as simple autocorrelations (in the same
way that it would be a mistake to reduce all the refinements of spectral
analysis to Fourier’s Theorem). All of the most effective strategies for
implementing F0-based separations (comb filters, correlograms, can-
cellation operations) are in one way or another formally related to
autocorrelation. But with their short memories, time-domain imple-
mentations, and avoidance of early windowing, these nets have more in
common with the sample-by-sample and period-by-period harmonic
cancellation strategies of de Cheveigne (Chapter 16, this volume) than
they do with traditional sharp comb filters that utilize long integration
times.

Synthetic, three–formant double vowels (/ae/, /er/) with different funda-
mentals (100, 112 Hz) were summed and processed by the network (Fig.
4.11). The signals circulating in the 150 delay loops are shown in the response
map, where it can be seen that the recurrence times of the loops with the high-
est average signal strength correspond to the periods of the two vowels (8.9
and 10 ms). The signals circulating in these two delay channels after 70 ms of
processing highly resemble the two vowel constituents. Correlations between
the autocorrelations of these processed signals and those of the individual-
vowels show how the signal separation unfolds over processing time.

In both single– and multi–channel cases, when vowel fundamentals were
separated by a semitone or more, the autocorrelations (and hence, power spec-
tra) of the constituent vowels could be accurately recovered. The quality of
the separations improved as a function of and vowel duration. The multi-
channel simulation demonstrated how recurrent timing nets could be scaled
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Figure 4.11. Separation of a double vowel (ae-er) with different F0s (100, 112 Hz) into its
constituent waveforms by means of a recurrent timing net. Top. Array of processing elements
and delay loops. Individual synthetic vowels and their summed waveforms. Bottom. Response
of the timing network to the double vowel. Arrows emerge from the two loops with the biggest
signals. Waveforms circulating in the two loop channels after 70 ms.

up to process multichannel positive, real–valued signals not qualitatively
unlike those produced by auditory nerve arrays. It also showed that auditory
objects can be separated when they activate the same sets of broadly tuned
frequency channels (i.e. without usable rate–place information), provided that
phase–locked fine timing information is available. The information related to
multiple auditory objects (the two vowels) is embedded in the phase structure
of the stimulus and phase–locked neural responses. This is a relatively
straightforward auditory example of how information can be multiplexed in
the time domain. The networks also demonstrate how an auditory scene anal-
ysis system could exploit phase–coherence and F0–differences without first
carrying out explicit estimations of F0 and segregating frequency channels on
that basis. For example, in Wang and Brown (1999), correlograms (f, tau)
label frequency channels with common F0–related autocorrelation profiles,
which are then grouped using an array of synchronizing oscillators. In timing
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Figure 4.12. Performance of the network in separating the vowels. Degree of similarity
between the output waveforms and the individual vowel constituents, as measured by the
correlation between their autocorrelations. The network rapidly separates the two vowels,
within 2-3 periods.

networks, formation of auditory objects occurs prior to analyses that yield
object attributes (F0 pitch, timbre).

One can ask how well these networks handle more than two auditory
objects. A third vowel /ee/ with yet a different fundamental (125 Hz) was
added to the mixture. This is akin to the problem of hearing out three different
kinds of musical instruments playing different notes (first that there are three
different notes, second that instruments with different timbres are playing the
three notes). Processing by the network resulted in the appearance of another
strong signal in the response map. Separation of the signals in the three–vowel
case was somewhat slower than for two vowels, but there was only a slight
reduction in the final quality of the separated signals. The performance of the
network therefore appears to be highly robust.

We are developing RTN-based voice pitch trackers that can handle
running speech (Fig. 4.13). The general form of the RTN response
looks somewhat similar to the stimulus autocorrelogram, and the RTN
has no difficulty following the rapidly varying pitch contour of the
speaker. F0 tracks can be constructed over multiple time scales (sam-
ples, loop periods, syllables, sentences) and the signals in the
corresponding loop-time trajectories can be easily and relatively seam-
lessly assembled on a sample-by-sample basis without resorting to
windowing and without leaving the time domain. Athough F0-tracking
only separates voiced segments, voicing provides a temporal frame-
work for delimiting unvoiced segments. If voiced segments of different
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speakers have asynchronous onsets and offsets, it may be possible to
use continuity rules to assign unvoiced segments to different speakers.
Once voiced segments can be identified, then adjacent voiced-unvoiced
or unvoiced-voiced patterns may also be analyzable as well-formed CV
units.

8 ENHANCEMENT OF VOWELS IN NOISE

A possible use of recurrent timing nets is for enhancement of periodic
sounds in noisy environments. Such processing would be useful for process-
ing music and voiced speech. Reductions in effective S/N ratios could be
expected to improve speech reception by human listeners and automatic rec-
ognition by machines. Related kinds of correlation–based strategies were used
in the 1950’s to detect periodic signals in noise (Lange, 1967, Meyer-Eppler,
1953), in situations where the period of the target signal was known a priori.
The present networks systematically sample all possible delays, such that the
optimum delay(s) can be determined by choosing the loop(s) with the largest
signal rms.
In order to assess the performance of the network in noise, a synthetic,
three–formant vowel (/ae/, F0=100 Hz, S/N = -20-20 dB) was added to frozen
white noise at different S/N ratios that ranged from –20 to 20 dB. The input
and output signals from the optimum delay loop (tau =10 ms) are shown in
the top panels of Figure 4.6. The bottom panels show the correlation between
the autocorrelation of these signals and that of the vowel in near–quiet (20 dB
S/N). Similarities between the processed signals and the minimal–noise case
improve with S/N and processing time. For all S/N ratios less than 1, the net-
work produced output signals (thick curves) that had higher correlations than
the unprocessed, input signals (thin curves). Processing by the network shifts
the curves to the left, an improvement in S/N by roughly 4-10 dB that is com-
parable to improvements that have been reported using comb filters (Stern,
2003).

9 THEORETICAL CONSIDERATIONS

We have been contemplating some of the longer–range theoretical implica-
tions that relate to brains as general–purpose self–organizing correlation
machines that extract invariant patterns in their inputs. Recurrent timing nets
use the periodic patterns in their inputs to dynamically form matched tem-
plates that they compare with subsequent inputs. For ease of visualizing their
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Figure 4.13. Response of a recurrent timing net (RTN) to running speech. Top: waveforem
and spectrogram for HINT sentence, “Big dogs can be dangerous”. Bottom: Output of RTN
after smoothing and normalization. Contours related to the voice pitch are seen in loop chan-
nels near 9 ms.

behavior, we have considered ordered arrays of monosynaptic delay loops. It
is conceivable, however, that such processing can also be carried out in ran-
domly connected networks, provided that recurrent, multisynaptic pathways
are available that span a wide range of loop–delays. If such networks use
coincidence elements that are transiently facilitated by temporal coincidences,
then it is not hard to envision how they might support dynamically–formed
reverberatory memories capable of retaining temporal patterns and interspike
interval statistics. In their operation such networks would be akin to self–
organizing recurrent synfire chains (Abeles, 1990, 2004) in which both syn-
chrony and temporal patterning of spikes play critical roles. Processing using
spike statistics “liberates signals from the wires”, since the respective identi-
ties of signals then no longer depends on which particular input lines the
respective signals conveyed. It opens the possibility of more flexible kinds of
neural networks that can multiplex signals, broadcast them in novel ways.
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Figure 4.14. RTN representation of a vowel in white noise.
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1 INTRODUCTION

Independent Component Analysis (ICA) (Attias, 1999, Bell and
Sejnowski, 1995, Comon, 1994, Hyvärinen, Karhunen and Oja, 2002, Lee,
1998) is now a well established method for data analysis. Its popularity is due
to its simple model with a wide range of interesting theories and its applicabil-
ity to many real data analysis problems. Research directions in ICA are
twofold and aimed at the relaxation of strong assumptions in traditional ICA
methods (no sensor noise, square mixing matrix, known number of sources,
independence of sources) as well as the use of ICA methods for low level sig-
nal representation. For the former, we propose the ICA mixture model and the
variational Bayesian ICA model (Chan et al., 2002) as a nonlinear extension
of ICA that can handle sensor noise, estimate the number of sources, and
model dependencies in the data. For the latter, ICA has been used as a tool for
efficiently encoding speech signals for subsequent pattern recognition, com-
pression and other machine learning tasks. In applying the algorithm to find a
representation for speech signals, the learned speech basis functions are used
for encoding speech signals for speech and speaker recognition tasks as well
as the difficult problem of separating mixed sounds given only one channel.
In this summary, we present these two directions in a graphical model by pro-
viding examples of source separation for one channel (simulations) and two
channels (real recordings).

2 GRAPHICAL MODEL FRAMEWORK

Recently, new algorithms have been proposed to solve difficult signal pro-
cessing problems. In many cases these algorithms can be described in a
graphical model, which provides a general framework that allows the exten-
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sion of algorithms to model new variables, parameters, signals and
relationships amongst each other (Jordan et al., 1998). The learning rules and
algorithms for the new model can be developed in a principled mathematical
manner using tools from statistical learning theory, graphical models and sig-
nal processing. The marriage between graphical models and signal processing
methods is gaining acceptance in several research disciplines and successful
examples include Hidden Markov Models (HMM) for speech recognition,
Independent Component Analysis (ICA) for blind signal separation, error cor-
rection codes or turbo codes in communication systems, and probabilistic
algorithms in robots.

2.1 Source Models

A single audio signal can be modeled with its probabilistic representation,
the time varying structure, and its decomposition into fundamental basis func-
tions that produce an efficient coding scheme. The generative model for a
single source can be extended into a multiple source observation problem.
The problem is then to understand the relationship between sources and how
to model their interaction with little a priori knowledge. Blind source separa-
tion is a prime example for modeling multiple sources in an environment.
Furthermore, the model is realistic since audio signals do not occur isolated
but are active simultaneously. Multiple source models may be given for single
channel observations as well as multiple channel observations. To model the
interactions with changing environments, this multiple source model needs to
be further extended to include contextual changes due to the environment or
non-stationary character of the sources. The model should be able to make
inference about the environmental dynamics, possibly track signal sources,
and understand the structure of the interacting source signals.

In its simplest form, a source can be a random variable with a fixed proba-
bility density function. A non-linear function such as the sigmoid function or
the tanh–function could represent the cumulative density for the source signal.
In Bell and Sejnowski (1995) this non-linear function was used to separate
super-Gaussian sources. This was a sufficient model because the goal was to
estimate an unmixing matrix and the observation model was linear, determin-
istic (no sensor noise) and there were as many sources as given observation
channels. There are many ways to extend this source model to include other
density functions such as sub-Gaussian sources (Lee, 1998) and more compli-
cated source densities that can be modeled with a mixture of Gaussians
(MoG) (Attias, 1999).

Natural signals however are not random. To the contrary, they can have
simple as well as complicated time structure. Speech signals for example are
time–varying signals with correlations in time. One popular way is to model
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Figure 5.1. A speech segment is linearly decomposed into basis functions and the
corresponding coefficients.

these dependencies in an HMM. The parameters of the HMM are trained on
speech data and different sets of parameters can provide models for pho-
nemes. A different approach to modeling the time structure of the source is to
learn the basis functions for the signal (Bell and Sejnowski, 1996). This is a
data generative model for the speech signal in which the observed speech seg-
ment can be decomposed into learned basis functions and their corresponding
coefficients. The basis functions are adapted such that coefficients are statisti-
cally independent, resulting in an efficient code.

In the subsequent sections, we illustrate how this data generative principle
can be used to in blind separation problems in the case of one and two
microphones.

3 ONE–CHANNEL SOURCE SEPARATION

The main concept behind the blind signal separation when given only a
single channel recording is based on exploiting a priori sets of time–domain
basis functions learned by ICA to the separation of mixed source signals
observed in a single channel (Jang and Lee, 2003). The inherent time structure
of sound sources is reflected in the ICA basis functions, which encode the
sources in a statistically efficient manner. We derive a learning algorithm
using a maximum likelihood approach given the observed single channel data
and sets of basis functions. For each time point we infer the source parameters
and their contribution factors. This inference is possible due to prior knowl-
edge of the basis functions and the associated coefficient densities. A flexible
model for density estimation allows accurate modeling of the observation and
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our experimental results exhibit a high level of separation performance for
simulated mixtures.

The single channel blind source separation can be formulated as follows:

This kind of model as been studied extensively in the computational audi-
tory scene analysis (CASA) literature (Brown and Cooke, 1994). The
dominant approach includes the use of strong prior information about fre-
quency clustering and the robust extraction of speech features. In the
synthesis model, the observed signal y is generated by independent source
signals x with different factor loadings The goal is to infer the unknown
source signals. This problem is highly ill conditioned and solutions can be for-
mulated only for a constrained setting. The main idea behind our generative
model approach is to make use of prior information as provided by the statis-
tical structure of the signals of interest. The constraint is to obtain an overall
efficient coding scheme, where the source signal prior information is obtained
by a sparse decomposition of the signal through basis functions that have been
learned. In the process of inferring the decomposition of the mixed signals,
the parameters that model the linear generation of the independent source as
well as the linear mixing of two sources given their basis functions and corre-
sponding pdf structure are estimated via gradient ascent on the maximum a
posteriori cost function. Figure 5.2 shows an example for separating two
sources from a single observation. The details of the applied methods are
described in Jang and Lee (2003).

Figure 5.2. Single channel blind source separation. Separation results of jazz music and male
speech. In vertical order: original sources (x1 and x2), mixed signal (x1+ x2), and the recovered
signals.
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3.1 Discussion on Single Channel

The technique in Jang and Lee (2003) for single channel source separation
utilizes the time–domain learned ICA basis functions. Instead of traditional
prior knowledge of the sources, the statistical structures of the sources that are
inherently captured by the basis and its coefficients from a training set are
exploited. The algorithm recovers original sound streams through gradient–
ascent adaptation steps pursuing the maximum likelihood estimate, computed
by the parameters of the basis filters and the generalized Gaussian distribu-
tions of the filter coefficients. With the separation results of the real
recordings as well as simulated mixtures, the proposed method is applicable
to real world problems such as blind source separation, denoising, and resto-
ration of corrupted or lost data. We are interested in including the extension of
this framework to perform model comparisons to estimate the optimal set of
basis functions to use given a dictionary of basis functions. This is achieved
by applying a variational Bayes method (Chan et al., 2002) to compare differ-
ent basis function models to select the most likely source. This method also
allows us to cope with other unknown parameters such the as the number of
sources. Other approaches to single channel source separation can be found in
deChevigné (2001), Cook and Ellis (2001), Roweis (2001), and Wang and
Brown (1999), and references therein.

4 TWO–CHANNEL SOURCE SEPARATION

We consider the case where mixture signals composed of point source sig-
nals and additive background noise are recorded at different microphone
locations In most practical situations the recorded microphone signals how-
ever contain a significant amount of reverberation. This phenomenon can be
again modeled as a data generative model and described in the equation below

where y denotes the observed data, x is the hidden source, a is the mixing
filter, and m is the convolution order and depends on the environment acous-
tics. An important distinction is made between spatially point sources and
distributed background noise. Assuming little reverberation, signals originat-
ing from point sources can be viewed as identical when recorded at different
microphone locations except for an amplitude factor and a delay (Visser et
al., 2003). There are many algorithms that attempt to solve this
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Figure 5.3. A generative model for representing a mixture of audio signals for two sensors.
The observations can be modeled in subbands and the source models can be trained on specific
audio signals such as the speech signal (Attias, 2003).

multichannel blind deconvolution problem. We outline promising approaches
based on viewing this problem in a graphical model.

4.1 Microphone Array Multiple Source Models

In the case of multiple channel observations through an array of micro-

An EM algorithm estimates the model parameters. As the number of
sources increases the E step is computationally intractable and Attias (2003)
proposes to use a variational approximation to obtain the posterior distribu-
tion. The benefit of solving the multichannel representation is that it not only
provides with separated signals but also with the mixing filters, which provide
information about the source locations with respect to each other. This addi-
tional information is useful in tracking a specific audio signal.

4.2 Separation of Real World Recordings

The separation of real world recordings poses difficult problems in many
ways. Although the model in equation 2 may be sufficient, it does not take
into account non–stationary issues arising from moving sources and environ-
mental dynamics. In some cases however, the environmental setting can be
controlled and the proposed solutions apply. The example below shows the
separation of two voices recorded live in a conference room during a presen-

phones, the multiple source models can be formulated as
follows: where is the observed signal in channel

is filter and is the additive noise signal.
The directed acyclic graph (DAG) model for this mixing problem yields

by Attias (2003):
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Figure 5.4. At the NSF workshop on speech separation Nov. 2003: Real live recording of two
voices (Al Bregman and Te-Won Lee) speaking simultaneously in a conference room
environment. The two top plots show the time course of two microphone recordings. Since the
microphones were spatially close the plots indicate only minor differences. The 2 bottom plots
are the separated voice signals. The signal to noise ratio improvement was about 15dB.

tation. The obtained results are very encouraging and point to the right direc-
tion. The audio examples can be found on the author’s website.

4.3 Discussion on Multi Channel

There are many algorithms that attempt to solve this multichannel blind
deconvolution problem.

Representative work in adaptive signal processing includes Yellin and
Weinstein (1996) where higher order statistical information is used to approx-
imate the mutual information among sensory input signals. Extensions of ICA
and BSS work to convolutive mixtures include Lambert (1996), Torkkola
(1996), Lee et al. (1997).

Traditional techniques using microphone arrays include methods for spa-
tial filtering such as beamforming where the time delay between microphones
in an array is used to steer a beam towards a sound source and therefore put-
ting a null at the other directions. Beamforming techniques make no
assumption on the sound source but assume that the geometry between source
and sensors or the sound signal itself is known for the purpose of dereverber-
ating the signal or source localization.

In contrast to beamforming techniques, ICA methods tries to solve the
deconvolution and automatic source localization at the same time. The main
assumption is statistical independence among sources and it assumes the same
number of sources as sensors. Beamforming or blind beamforming (which
resembles more the ICA approach) and ICA methods make assumptions in
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different ways to solve similar problems. Assuming statistical independence
among source is a fairly realistic assumption but it comes with several compu-
tational constraints such as the required number of sensors to be the same as
the number of sources. Furthermore, no sensor noise is usually taken into
account.

For practical reasons it is desirable to make stronger assumptions that ele-
vate the sensor number, sensor noise and other constraints. A valid example is
the use of a speech model. The characteristics of the speech signal can be
included in many ways. In this proposal we plan to elaborate on the source
model to include time structure modeled by a hidden Markov model (HMM),
the observations in each state are modeled by a mixture of Gaussians in the
cepstral domain. This representation is standard for modeling the dynamics of
the speech signal. We believe that it will serve as a valid source model. Note
that this model is used for the learning of the unmixing filters. The enhanced
speech signal is obtained by filtering the observed sensor signals through the
unmixing filters.

5 DISCUSSION

Relationship to other methods:
There are several research directions that are related to this research. This

work relates to computational approaches for auditory scene analysis (Breg-
man, 1994, Darvin and Carlyon, 1995, Cooke and Ellis, 2001, deCheveigné,
2001, Wang and Brown, 1999). It also relates to the problem of robustly rec-
ognizing words in a realistic noisy environment (Stern et al. 1996, Acero,
1990). Computational auditory scene analysis (CASA) techniques focus on
techniques for grouping of frequency bands to model the auditory system
(Bregman 1994, Darvin and Carlyon 1995, Cooke and Ellis 2001, de Chev-
eigné, 2001, Wang and Brown 1999). The goal is to model listeners who are
adept at extracting sources from mixed sounds although background noise
signals can significantly overlap in time and frequency with the target speech
signal.

Robust speech recognition in realistic noisy environments can be challeng-
ing when the speech signal is mixed with other acoustic sources (Acero, 1990,
Stern et al., 1996, Huang et al., 2001). In particular, when two speakers talk
simultaneously, most speech recognition systems perform poorly.
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6 CONCLUSIONS

We summarized our approaches for separating voices from mixed record-
ings. In the single channel case, a priori learned basis functions are used to
model the temporal structure of the speech signals. A maximum likelihood
approach is used to separate a voice from jazz music given only one mixed
channel. In case of two microphones, the problem of separating two voices
recorded by two microphones has been tackled. The mixing coefficients, time
delays and reverberation coefficients are estimated using the maximum likeli-
hood or infomax approach. The two approaches can be combined in a
graphical model since both methods can be represented as data generative
models where learning involves the representation of signals via the basis
functions and inference involves the estimation of sources. The inference part
in case of the single channel is nonlinear and linear in the two channel case.
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1 INTRODUCTION

The signal to noise ratio (SNR) of speech signals can be considerably
enhanced by recording them through arrays of microphones simultaneously,
and combining the recordings properly. The manner in which microphone
array recordings must be combined in order to obtain the best results has been
the subject of much research over the years.

The simplest array processing method is delay-and-sum beamforming
(Johnson and Dudgeon, 1993). Sounds from any source must travel different
distances to the different microphones, the recordings from which are conse-
quently delayed with respect to each other. In delay-and-sum beamforming,
the recordings are aligned to cancel out the relative delays of signals from the
desired source, and averaged. Interfering noises from sources that are not
coincident with the desired source remain misaligned and are attenuated by
the averaging. It can be shown that if the noise signals corrupting the micro-
phone channels are uncorrelated to each other and the target speech signal,
delay-and-sum beamforming results in a 3 dB increase in the SNR of the out-
put signal for every doubling of the number of microphones in the array.

The term “beamforming” derives from the fact that such processing can be
shown to selectively pick up signals from a narrow beam of locations around
the desired source, by attenuating signals from other locations. The narrower
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the beam, the better the ability of the array to select the desired source. The
beamwidth and directivity of the delay-and-sum beamformer can be improved
by increasing the number of microphones in the array, and by appropriate
geometric arrangement of the microphones.

Far more effective than delay-and-sum beamforming is filter-and-sum
beamforming. In this method, the signal recorded by each microphone is fil-
tered by an associated filter before the various signals are combined. The
spatial characteristics of the beamformer can be controlled by modifying the
parameters of the microphone filters.

The design of filter-and-sum beamformers usually involves the estimation
of array filter parameters, such that the signal from the desired source is max-
imally enhanced. Unfortunately, this desired signal cannot be known a priori,
and the actual design process optimizes alternative criteria that are expected
to relate to the enhancement achieved on the desired signal. Sidelobe cancel-
lation techniques design the array filters to attenuate signal energy from
directions other than that of the desired source (Griffiths and Jim, 1982).
Noise suppression methods design the array to suppress a known or estimated
noise (Nordholm et. al., 1999). Least squares methods attempt to maximize
the SNR of the array output using estimates of the power spectrum of the
desired speech signal (e.g. Aichner et. al., 2003). Thus, effective beamform-
ing requires characterization of either the noise or the desired signal.

Speech recognition systems are repositories of detailed information about
the speech signal. They contain statistical characterizations of the spectral
measurements for the sounds in a language (usually modelled as hidden
Markov models (HMMs)), phonotactic rules for how sounds can follow one
another (usually represented as phonetic dictionaries that map words in the
language to sequences of phonemes), and statistical or rule–based descrip-
tions of valid word sequences (usually in the form of grammars or N-gram
language models). Together these form a complete statistical characterization
of every speech signal that represents a valid sentence in the language. Con-
versely, any valid speech signal can be expected to conform to the statistical
characterizations stored in the recognizer.

The beamforming algorithms presented in this chapter are founded on this
observation. These algorithms attempt to optimize beamformer parameters
such that the signal output by the array maximally conforms to the statistical
models stored in an HMM–based speech recognizer (Seltzer, 2003). Specifi-
cally, they optimize the filter parameters of a filter-and-sum array to
maximize the likelihood attributed to its output by a speech recognizer. Two
kinds of beamforming algorithms are presented. The first kind aims to sepa-
rate out and enhance a speech signal from a mixture of the speech and non-
speech signals. Since the interfering signals are not speech and do not con-
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form to the models in the speech recognizer, filter parameters can be
optimized using the recognizer directly. The second kind of beamforming
algorithm attempts to separate signals from multiple speakers who are speak-
ing simultaneously. This is achieved by beamforming separately for each of
the speakers: the desired signal for each beamformer is the speech from one of
the speakers, while the rest of the speakers are considered as interference.
Here an additional complication is introduced by the fact that interfering sig-
nals are also speech that may also conform to the models in the recognizer. To
account for the multiple conformant signals, the beamforming algorithm uti-
lizes factorial hidden Markov models (FHMMs) that are derived by
compounding the statistical models stored in the recognizer, to simulta-
neously model the desired and interfering speech signals. The microphone
array filter parameters are estimated such that the likelihood of the output of
the array, as measured by the constituent components of the factorial HMM
that represent the desired speaker, is maximized.

We note that an HMM–based speech recognition system has two distinct
statistical components: acoustic models, that represent statistical constraints
on the acoustic manifestation of the speech signal, and a language model that
represents linguistic constraints on spoken utterances. For signal enhancement
we present two algorithms: one that utilizes only the statistical acoustic con-
straints and needs deterministic linguistic constraints (Seltzer and Raj, 2001),
and a second that utilizes both, statistical acoustic and linguistic constraints
(Seltzer et. al., 2002). For speaker separation we present an algorithm utilizes
only statistical acoustic constraints and requires deterministic language con-
straints (Reyes et. al., 2003). The development of speaker separation
algorithms that utilize both statistical acoustic and linguistic constraints from
the recognizer is left for future work.

2 FILTER-AND-SUM ARRAY PROCESSING

We employ traditional filter-and-sum processing to combine the signals
captured by the array. In an optional first step the speech source is localized
and the relative delays caused by path length differences from the micro-
phones to the source are resolved, so that the waveforms captured by the
individual microphones are aligned with respect to each other. Several algo-
rithms have been proposed in the literature for source localization (e.g.
Brandstein and Silverman, 1997), and any of them can be applied here.
Source localization and signal alignment is not mandatory, however, the algo-
rithms presented in this chapter have been experimentally verified to work
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equally well when the signals are not aligned beforehand (Reyes et. al., 2003,
Seltzer et. al., 2004).

Once the signals are time aligned, each of the signals is passed through an
FIR filter, and the filtered signals are added to obtain the final signal. This
procedure can be mathematically represented as follows:

where represents the sample of the signal recorded by the micro-
phone, represents the delay introduced into the channel to time align it
with the other channels, represents the coefficient of the FIR filter
applied to the signal captured by the microphone, represents the convo-
lution operation, and y[n] represents the sample of the final output signal.
N is the total number of microphones in the array.

3 BEAMFORMER DESIGN FOR SIGNAL
ENHANCEMENT

The beamforming algorithm for signal enhancement attempts to optimize
the filter parameters in the filter-and-sum array such that signals from a
desired speech source are enhanced in the output of the array. All interfering
signals that must be suppressed are assumed to be non-speech signals, or bab-
ble-like signals that are not well represented within the speech recognizer.

Figure 6.1 shows the overall design of the filter optimization procedure for
signal enhancement. The objective of the algorithm is to choose the filter
parameters that maximize the likelihood of y[n] , the output of the
array, as measured by the recognizer. We distinguish between two versions of
the algorithm: a) a calibration algorithm, that utilizes only statistical acoustic

Figure 6.1. Beamformer design for signal enhancement. Filter parameters are set to maximize
recognizer likelihood.
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constraints from the recognizer and b) an unsupervised algorithm that utilizes
both statistical and linguistic constraints.

3.1 Filter Calibration

For the calibration algorithm we assume that the correct transcription, i.e.
the sequence of words in the utterance, is known. Thus the only statistical
constraints applied are acoustic. In practice, we utilize only a single calibra-
tion utterance from the speaker, for which the transcription is known, to
optimize the filters. Future utterances by that speaker are processed with the
estimated filters. The implicit assumption in this procedure is that speakers do
not move too much once their calibration utterance has been recorded. This is
not an unrealistic assumption is several situations, such as in automobiles, or
users speaking to their desktop computers.

Since the transcription of the calibration utterance is known, an HMM that
represents that transcription can now be constructed by concatenating the
HMMs for the constituent phonemes that make up the words in the sentence,
in appropriate order. We derive the phoneme HMMs from the speech recog-
nizer itself. Filter optimization is then performed using the HMM for the
known transcription.

HMM–based speech recognition systems do not operate directly on the
speech signal itself. Rather, they operate on a frame–based parameterization
of the speech signal. We therefore pose the optimization problem in the con-
text of these frame–based parameterizations. In this chapter we assume that
each frame of speech is parameterized as a vector of Mel–frequency cepstral
coefficients (MFCC), however, the approach taken is equally applicable to
any other type of feature vector. Let h represent a vector composed of all fil-
ter parameters for all microphones. Let represent the signal y[n] in the

frame of the calibration utterance, expressed as a function of h . The
MFCC vector the frame, is computed as

where M represents the matrix of weighting coefficients of the Mel filters.
The entire utterance is parameterized into the sequence of vectors

which we represent as Z(h).
The likelihood of any utterance must be computed over all possible state

sequences through the HMM for the utterance. In order to simplify the com-
putation, we observe that in an HMM–based system, the likelihood of any
data sequence is largely represented by the likelihood of the most likely state
sequence through the HMMs. The log–likelihood of Z(h) can therefore be
approximated as
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where represents the most likely state sequence.
represents the probability of computed from the state output distribu-
tion of the state in this sequence, is determined by
the state transition probabilities of the HMM.

Optimization of L(Z(h)) requires joint estimation of both h and the most
likely state sequence This can be performed by iteratively
estimating the optimal state sequence for a given h using the Viterbi algo-

is equivalent to minimization of the objective function:

Q(h) can be optimized with respective to h using hill–climbing methods
such as the method of conjugate gradients (Polak, 1971). Details of the gradi-
ent derivation for the estimation of h can be found in Seltzer (2003).

The entire algorithm for optimizing h from a calibration utterance is thus:

1.

2.

3.

4.

5.

6.

Construct an HMM for the transcription of the calibration utterance
using HMM components from the speech recognizer.

Initialize h as

Process the signals using h to generate an output signal.

Determine the optimal state sequence through the HMM for the cali-
bration utterance using the array output.

Use the optimal state sequence and (6.2) to estimate h.

If Q(h) has not converged, return to step 3.

rithm, and optimizing with respect to h for that state
sequence. cannot however be directly optimized and
computationally expensive hill–climbing methods must be used to solve for
h . To reduce computational effort, we model state output distributions as
Gaussians, and assume that to maximize it is sufficient to mini-
mize the weighted distance between and

the mean of the output distribution or Specifically, we assume that the
weights matrix where IDCT is the inverse discrete
cosine transform matrix. This effectively transforms the maximization of

into the minimization of the Euclidean distance between two
log–spectral vectors. Under these assumptions, maximization of
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Note that time alignment of the signals can be performed before step 3 for
better initialization of the algorithm, but it is not essential. If the calibration
utterance is recorded simultaneously over a close–talking microphone, fea-
tures derived from this cleaner signal can be used either to determine the
optimal state sequence in step 4, or directly in (6.2) instead of the Gaussian
mean vectors. Once the filter parameters h are derived from the calibration
utterance, they are used on newer utterances by the speaker.

3.2 Unsupervised Filter Estimation

In the unsupervised filter estimation algorithm all constraints are statisti-
cal. Both the acoustic model and the language model employed by the
recognizer are used to guide the beamforming. Thus, the HMM that is used to
measure the likelihood of the output of the array is not merely the HMM for
the correct transcription for the recorded utterance, but rather represents the
entire expected language. Such an HMM must, of necessity, be very large,
and the measurement and maximization of the likelihood of an utterance can
be arbitrarily complex. As a result, we resort to an iterative algorithm to per-
form the optimization.

In each iteration, we process the signal using the current estimate of the
filter parameters and perform speech recognition on the output of the array.
The recognizer’s output is a string of words, that is then assumed to be the
true transcription for the utterance. An HMM is then constructed for this tran-
scription, and filter parameters are optimized in the manner described in
Section 3.1. The entire algorithm for estimating the optimal filters for an
utterance can be stated as follows:

1.

2.

3.

4.

5.

6.

7.

Initialize h as

Process the signals using h to generate an output signal.

Perform speech recognition on the array output to obtain a word
sequence.

Construct an HMM for the recognized word sequence using HMM
components from the speech recognizer.

Determine the optimal state sequence through the HMM using the
current array output.

Use the optimal state sequence and (6.2) to estimate h.

If Q(h) has not converged, return to step 3.

Once again, time alignment of the signals can be performed before step 2
for better initialization of the algorithm, but it is not essential. It is important
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to note that unlike the calibration algorithm, the unsupervised filter estimation
algorithm is applied to every recorded utterance individually. The estimated
filters are hence utterance specific, although experimental evidence suggests
that they do indeed generalize to other utterances by the same speaker, from
the same location.

4 EXPERIMENTAL EVALUATION OF
BEAMFORMING FOR SIGNAL ENHANCEMENT

In this section we describe some experiments evaluating the beamforming
algorithms presented in Section 3. The experiments were conducted on two
microphone array databases recorded at Carnegie Mellon University. The
first, database, which we refer to as the “CMU-8” corpus, was collected in the
CMU robust speech recognition laboratory. The data were recorded by a lin-
ear microphone array with 8 elements spaced 7 cm apart. The array was
placed on a desk and speakers were seated directly in front of it at a distance
of 1m. Speakers also wore a close–talking microphone during the recording.
Each array recording also has a corresponding clean recording obtained from
the close–talking microphone. The laboratory had multiple noise sources,
including several computer fans and overhead air blowers. The reverberation
time of the room was measured to be 240 ms. The average SNR of the record-
ings is 6.5dB. The corpus contains 140 recordings comprising 14 utterances
each from 10 speakers. Utterances consist of strings of keywords, as well as
alphanumeric strings, where the user spelled out answers to various census
questions, such as name, address, etc.

The second database, which we refer to as the CMU-PDA corpus was col-
lected on a Compaq IPAQ PDA outfitted with four microphones, using a
custom–made frame. The microphones were placed at the corners, forming a
rectangle around the PDA that was 5.5 cm across and 14.6 cm from top to bot-
tom. Recordings were made in a room containing several items of furniture,
three computers, and a printer. Users held the PDA in whichever hand was
most comfortable, and read sentences from the Wall Street Journal, that were
displayed on the PDA’s screen. A total of 8 speakers recorded approximately
40 utterances each for the corpus. The average SNR of the recorded signals
was 13 dB. Simultaneous recordings were also obtained over a close–talking
microphone worn by the speakers.

Rather than subjective tests or measurements of SNR, we evaluate array
performance by comparing the recognition performance of an automatic
speech recognition system on the output of the array, to its recognition perfor-
mance on unprocessed noisy recordings. Superior processing of the array
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Figure 6.2. Word error rates for the CMU-8 and CMU-PDA microphone array databases. The
five bars in each plot show the word error rates obtained from a) signals captured by a single
microphone (1 channel), b) signals obtained from delay-and-sum array processing (D&S), c)
signals obtained from beamformers trained with the calibration algorithm (Calib), d) signals
obtained from beamformers trained using the unsupervised algorithm (Unsuper), and
e) recordings from a close-talking microphone (clstk).

recordings must result in better recognition performance. In effect, we use the
recognizer as a substitute for the human ear that can provide objective mea-
surements1. As a comparator, we also report recognition results obtained with
simple delay-and-sum beamforming.

The CMU SPHINX-III speech recognition system with context–dependent
continuous density HMMs with 8 Gaussian/state, trained using 7000 utter-
ances from the WSJ0 training set was used in all experiments. In all
experiments, 20-tap FIR filters were estimated for all microphones. For the
calibration experiments one utterance from each speaker was used to estimate
filter parameters, and the rest were processed using the estimated filter param-
eters. In the unsupervised case, filter parameters were estimated afresh for
each utterance.

The recognition results for the two databases are shown in Figure 6.2. We
observe that signals processed both by the calibration and unsupervised algo-
rithms result in significant improvements over delay and sum processing.
Additionally, we observe that the unsupervised algorithm is often more effec-
tive than the calibration algorithm, although the calibration algorithm uses
deterministic language constraints whereas the unsupervised algorithm uses
only statistical constraints. This is attributable to the fact that the unsupervised
beamforming is performed individually on every utterance, and thus com-
putes array parameters that are specific to the spatial and frequency
characteristics of that utterance. On the other hand, the calibration algorithm

For both automatic speech recognition systems and human beings, improved intelligibility of the speech
signal does not necessarily imply improved SNR, or vice versa. For instance, listening studies have
shown that signal enhancement techniques that improve the SNR of noisy speech signals often result in
a degradation of the intelligibility of the signal, although they do improve the perceptual quality. This is
due to the fact that procedures that attenuate noise often also attenuate spectral components of the speech
signal along with the noise.

1.
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optimizes filters on a calibration utterance and applies it to future utterances
from the speaker, and is thus dependent on the similarity of spatial and fre-
quency characteristics of the calibration and test utterances for effectiveness.

On the whole, the experiments indicate that optimizing the beamformer
using the detailed statistical information about speech, that is present in a
speech recognizer, can result in highly effective beamforming for signal
enhancement.

5 BEAMFORMING FOR SPEAKER SEPARATION

The beamforming algorithm for speaker separation addresses the situation
where there are multiple speakers talking simultaneously and the array pro-
cessing scheme must selectively extract the signal from one of the speakers.
In this situation, the interfering signals — signals from speakers other than the
one we wish to extract — also match the statistical constraints presented by
the recognizer. As a consequence, although one may expect the objective
function used for filter estimation, i.e. the likelihood of the output of the array
as measured by the recognizer, to have multiple local optima, one for each
speaker, the iterative algorithms presented in Section 3 are usually unable to
arrive at these optima.

It thus becomes necessary to explicitly model the fact that there are multi-
ple speech sources that are simultaneously active. Assuming that the multiple
sources are independent of each other, the joint probability for the multiple
sources is simply the product of the probability distributions of the individual
sources. The probability distribution of any single speech source is modelled
by a speech recognizer.

Once again, we note that the speech recognizer in fact represents a combi-
nation of two independent sets of statistical constraints: acoustic constraints
that are modelled by HMMs, and linguistic constraints that are modelled by a
grammar or an N-gram language model. The algorithm presented in this chap-
ter derives only acoustic constraints from the recognizer and assumes that all
linguistic constraints are deterministic. i.e. that the exact word sequence
uttered by each of the speakers is known.

From the known word sequences for each speaker we construct an HMM
for that word sequence using components from the recognizer. The con-
structed HMMs represent the probability distribution for the speakers. The
joint distribution for all the speakers can be shown to be a cross product of the
HMMs for the individual speakers, i.e. a factorial HMM, or FHMM.

In an FHMM each state is a composition of one state from the HMMs for
each of the speakers, reflecting the fact that the individual speakers may have
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Figure 6.3. The dynamics of a factorial HMM for two speakers. The signal for each speaker
follows the dynamics dictated by the HMM for that speaker, independently of the other
speaker. The final output, however, is a combination of the outputs of the two HMMs.

been in any of their respective states, and the final output is a combination of
the output from these states. Figure 6.3 illustrates the dynamics of an FHMM
for two speakers

For simplicity of explanation, we describe the solution to the problem of
separating the signals from a speaker when there are only two speakers talk-
ing. Extension to the case where there more concurrent speakers is
straightforward. Let represent the state of the HMM for the first
speaker, and represent the state of the HMM for the second speaker.
Let represent the factorial state obtained when the HMM for the first
speaker is in state i and the HMM for the second speaker is in state j. We
assume that the state output densities of all HMM states have parametric
forms. Let and represent the parameters of the state output densities of

and respectively. Let the desired speaker, whose signals we aim to sep-
arate, be the speaker (where k is either 1 or 2). The output density of

is a function of the parameters of the output densities of its component
states:

where z represents any feature vector computed from the output of the array,
and is the actual function of and that computes the prob-
ability of z in the factorial state The subscript k in and

indicates that these terms are specific to the FHMM that is constructed
for the estimation of beamformer parameters for the speaker.

The precise nature of the function is unknown. This is because the
relative signal levels of the various speakers is unknown, even at the outset.
Further, as the algorithm iteratively improves the beamformer for the desired
speaker, the levels of the competing speakers in the output of the array is
reduced by an unknown degree. At each stage of the algorithm, must
reflect the unknown degree of mixing of the various speakers in the current
output of the array. As a result of the uncertainty in the initial levels of the
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speakers or the degree of separation achieved at any iteration, it is difficult, if
not impossible, to determine in an unsupervised manner.

We do not attempt to estimate Instead, we begin with the simplify-
ing assumption that the HMMs for the individual speakers have Gaussian
state output distributions (in order for this assumption to be valid, the recog-
nizer used must also model HMM states with Gaussians). Additionally, we
assume that the state output density for any state of the FHMM is also a
Gaussian whose mean is a linear combination of the means of the state output
densities of the component states, and

Let and represent the D -dimensional mean vectors of the Gaussian
state output density for and respectively, where D is the dimensional-
ity of the feature vectors computed from the output of the array. We define

the mean of the Gaussian state output density of as:

where and are D × D weighting matrices. As before, the subscript k
indicates that these terms are specific to the FHMM that is constructed for the
estimation of beamformer parameters for the speaker. We also assume
that the Gaussian state output densities of all states of the factorial HMM for
the share a common covariance matrix

The matrices and the covariance matrix are unknown and must be
estimated from the current output of the array. The estimation is performed
using the expectation maximization (EM) algorithm. In the expectation (E)
step of the algorithm, the a posteriori probabilities of the various factorial
states are found. The factorial HMM has as many states as the product of the
number of states in the component HMMs that compose it, and direct compu-
tation of the E step is prohibitive. We therefore take a variational approach to
the estimation of a posteriori probabilities. For further details on the varia-
tional estimation of a posteriori state probabilities in FHMMs in general, and
for the special case of FHMMs for beamforming, we refer the reader to
Ghahramani and Jordan (1997) and Reyes et. al. (2003).

Once the matrices and the covariance are estimated, all state out-
put densities for the FHMM can be computed. Thus, the FHMM is entirely
specified, and filter parameters can be updated. Since the FHMM represents
the estimated distribution of a combined signal from multiple speakers, opti-
mizing filter parameters to maximize the likelihood assigned by the FHMM to
the output of the array is unlikely to result in a beamformer that selects only
the desired speaker. The goal is to optimize filter parameters such that the out-
put of the array most conforms to the HMM for the desired speaker, and not to
the entire FHMM itself. In order to achieve this, we perform the optimization
as follows: we find the most likely state sequence through the FHMM for the
current output of the array. Each state in this sequence is a factorial state that
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represents the compounding of one state each from the HMMs for the individ-
ual speakers. The corresponding state sequence for the desired speaker can be
obtained by simply identifying the state from the HMM for the desired
speaker that contributed to each factorial states in the most likely state
sequence. This state sequence represents an estimate for the most likely state
sequence through the HMM for the desired speaker. Once this state sequence
is obtained, filter parameters are optimized from it using a procedure analo-
gous to that used in Section 3. The overall filter estimation procedure to
separate the signals for a desired speaker is as follows:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Construct an HMM for the transcription of each speaker using HMM
components from the speech recognizer.

Construct an FHMM from the HMMs for the individual speakers.

Initialize h as

Process all microphone signals using h to generate an output signal.

Learn all matrices, and the shared covariance matrix for the
FHMM, using the output of the array.

Using the learnt and matrices, determine the optimal state
sequence through the FHMM using the array output.

Extract the state sequence for the desired speaker from the optimal
state sequence through the FHMM.

Use the optimal state sequence and (6.2) to estimate h.

If Q(h) has not converged, return to step 3.

The above procedure must be separately performed for each speaker that
we wish to separate from the mixed recordings.

6 EXPERIMENTS ON SPEAKER SEPARATION

In this section we present experimental evaluation of the speaker separa-
tion algorithm presented in Section 5. Simulated mixed–speaker recordings
were generated using utterances from the test set of the Wall Street Jour-
nal(WSJ0) corpus. Room simulation impulse response filters were designed
for a room of dimensions 4m × 5m × 3m, with a reverberation time of
200msec, using the image method (Allen and Berkley, 1979). The micro-
phone array configuration consisted of 8 microphones placed around an
imaginary 0.5m × 0.3m flat panel display on one of the walls. Two speakers
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were situated in different locations in the room and 8-channel recordings were
created for the mixtures.

Figure 6.4 shows example waveforms extracted from a mixture of two sig-
nals using the proposed algorithm. In this example the signal from the
background speaker was scaled to be 20dB below that from the foreground
speaker in the mixed signal. The FHMM–based beamforming algorithm is
able to extract the signal from the background speaker almost perfectly,
except for some scaling and DC shift. The signal for the foreground speaker
shows minor residual artifacts from the background speaker in regions where
the foreground speaker is silent. However these lie over 23 dB below the
overall signal level for the foreground speaker.

Tables 6.1 and 6.2 show a speaker-to-speaker measure for the signals
extracted from two different recordings. The reported measure is the ratio of
the energy of the signal from the desired speaker to that from the competing
speaker in the output of the array, expressed in dB. We refer to this measure
as the speaker-to-speaker ratio, or SSR. The higher the value of the SSR, the
better the degree of separation of the desired speaker. Table 6.1 shows the
results obtained on a recording that contained a foreground speaker and a
background speaker who was 20dB below the foreground speaker. Table 6.2
shows the results obtained for a recording where the energy of the signal from
both speakers were approximately equal

The tables have three columns. The first column in the tables shows the
SSR that can be achieved when the array filters are optimized to minimize the
error between the output and the known original unmixed signal for the
speaker. This represents an estimate for the best possible separation that can
be achieved with a time–invariant beamformer for the signal. The goal of the
FHMM–based beamformer is to achieve similar levels of signal separation.

The second column in the tables shows the signal separation achieved
using delay-and-sum beamforming. Exact speaker locations and their dis-
tances to the microphones are known beforehand in our experiments, and
hence the exact relative delays of the signals recorded by the various micro-
phones can be determined. For the delay-and-sum processing reported in the
second column of Tables 6.1 and 6.2, signals were aligned perfectly, based on
the exact relative delays computed from the known speaker locations. Thus,
the results reported in the second column represent the best achievable SSRs
with delay-and-sum processing.

The third column in the tables shows the SSRs achieved using the FHMM
based beamformer described in Section 5. When the mixed signals have dif-
ferent levels (table 6.1), the FHMM–based beamformer is observed to achieve
SSRs comparable with those achieved using perfect knowledge of the
unmixed signals. On the background speaker in particular, an impressive SSR
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Figure 6.4. Example waveforms for signals extracted from a mixture of two speakers. The top
panel shows a mixed signal, and the bottom two panels show the signals extracted for the two
speakers. The signal from the background speaker was scaled to be 20dB below the foreground
speaker in the mixed signal.
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of 38dB is achieved. This is an improvement of nearly 50dB over delay-and-
sum processing. When the signal levels of the two mixed signals are compara-
ble (table 6.2), the SSR on the first speakers is somewhat less than that
achievable with perfect knowledge of the desired unmixed signal, neverthe-
less an SSR gain of over 20dB over the original mixed signal is achieved.

7 CONCLUSIONS AND FUTURE WORK.

In this chapter we have presented microphone array beamforming algo-
rithms that utilize the detailed statistical models in a speech recognizer to
selectively enhance a desired speech signal in the presence of speech or non-
speech interferences. These algorithms base beamforming on detailed infor-
mation about the speech signal, rather than on any estimate of noise, or the
spatial geometry of the recording environment. We show that a conventional
HMM–based speech recognition system can provide sufficient statistical con-
straints on the speech signal in the output of the beamformer to enable us to
pick out and enhance a speech signal in a noisy environment.
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The beamforming algorithms presented in this chapter have been studied
in great detail and have found to be effective on varied data (Reyes et. al.,
2003, Seltzer 2003). However, the algorithms remain computationally expen-
sive. Also, the procedures must be performed offline and cannot currently
adapt to continuously changing recording environments or speaker location.
In addition, the speaker separation algorithm makes the rather serious
assumption that word sequences uttered by the speakers are known.

Future work must address the issue of speeding up the computation, and
developing online versions that can adapt the beamformer continuously to the
incoming signal. The presented speaker separation algorithm only utilizes
acoustic constraints from the speech recognizer. Future work must address the
development and evaluation of extensions that also incorporate statistical lan-
guage constraints for speaker separation.
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1 INTRODUCTION

It is no revelation that the world we live in is dominated by statistical reg-
ularities. Most cases of informative sensory input exhibit a strong sense of
structure. This fact has been used by many researchers in the field perception
to formulate theories on the importance of this structure. In this chapter we
will be highlighting the importance of using auditory structure to construct
artificial listening systems, especially when we are interested in source
separation.

Starting with Helmholtz at the beginning of the 20th century, researchers
and thinkers came to recognize the effect of the environment on the develop-
ment of our perception. A major step was taken by Barlow (Barlow 1961,
Barlow 1989), who was the first to clearly state that the statistical nature of
sensory messages is important to all levels of perception ranging from the
sensory receptors to higher cognitive levels. He was particularly interested in
redundancy and how it can be taken advantage of. Later reformulations of his
work suggested that factorial coding, in which sensory input is broken up in
statistically independent elements, was a function of the perceptual system. In
the last 15 years this field has gathered momentum and we’ve seen many
important publications relating sensory statistics to perception. The most
recent work in this field comes from the Independent Component Analysis
(ICA) front, in which factorial coding optimization was used to self-organize
perceptual mechanisms from the statistics of natural sensory signals
(Olshausen and Field 1996). In this report we will show some of these results
in the auditory setting.

The basic idea behind all that work is simple. Raw sensory input requires
very large bandwidth and includes a lot of redundant information. This is
because all natural sensory input is full of repetitions of the same elements
(edges and lines for images, harmonic ratios for natural sounds, etc.). A lot of
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this redundant information has been ‘understood’ by our perceptual develop-
ment and has influenced the evolution our sensory systems. As a result,
throughout our sensory systems we find detectors tuned to these features. In
this remaining sections we will show how using this notion of redundancy
reduction can computationally evolve a lot of the auditory perception
elements.

2 TOOLS FOR REDUNDANCY REDUCTION

Although there are numerous ways to achieve redundancy reduction, there
are two algorithms that have proved to be most useful in the context of audio
analysis, Principal Component Analysis (PCA) and Independent Component
Analysis (ICA). Although the results in the subsequent sections can be repli-
cated using a variety of other tools, due to their relative simplicity for the
remainder of this chapter we will be primarily using these two methods. A
short introduction of these follows.

2.1 PRINCIPAL COMPONENTS ANALYSIS

Principal Component Analysis (PCA) is one of the most well known meth-
ods for data analysis. It has been around for many years and has come to be
known by many different names in various disciplines (Karhunen-Loève or
Hotelling transform). The objective of this method is dual. Primarily it is to
massage input data in a form where the multiple dimensions of the input data
are mutually decorrelated. As a side effect the significance of each decorre-
lated dimension, in terms of energy contribution in the original input, is also
estimated. Upon concluding the computations the user is presented with a
ranking on which dimensions are most important and based on this ranking
we can throw away non-important dimensions and reduce the dimensionality
of the data with minimal side effects.

Computation is fairly straightforward and is based on second–order statis-
tics of the data. Having a set of N-dimensional data in a random vector x we
obtain their covariance matrix where E{·} denotes expectation.
We extract the eigenvectors of as columns in a matrix V and its eigenval-
ues as diagonal entries in a matrix The matrix V is a linear transform that
can decorrelate x, that is if we set then its covariance is
diagonal. This means that there are zero correlations between different dimen-
sions of y, therefore no redundancy in the signal as far as correlation goes. If
dimensionality reduction is needed then by noting the smallest valued eigen-
values in we can omit the corresponding eigenvector columns in V and use
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the remaining matrix for the transformation. This results in a y which is still
decorrelated, but with lesser dimensions than the starting input.

More information about PCA and details on the computations as well as
alternative algorithms can be found in Jolliffe (1986), Roweis (1998) and
Haykin (1994).

2.2 INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) can be seen as a generalization of
PCA. PCA only achieves redundancy reduction by eliminating correlations
between different dimensions. Correlations are order statistics, and in gen-
eral audio signals exhibit higher–order statistics as well. In principle, ICA
goes the extra step and performs the same process as PCA for all orders of sta-
tistics. Although it might not sound like it, this makes an enormous difference
in results. When it comes to audio processing decorrelation means nothing to
our ears, but independence (the more stringent condition that ICA imposes),
has a lot of semantic meanings, some of which we’ll see later in this chapter.

Unfortunately general and complete solutions to ICA are a computation-
ally impossible task since one could be facing infinite orders so various
shortcuts to getting a viable solution have been proposed. A couple of inter-
pretations of independence which are perhaps more relevant to PCA are the
following. Independence can be loosely defined as decorrelation between all
possible transformations of our data. Given out data x we know that its dimen-
sions are mutually independent if for all measurable g(·) and f(·)
(Hyvärinen 1999). This is again a problem with infinite constraints, however
by carefully selecting the two functions g(·) and f(·) one can perform ICA
using only a couple of their instances. A more algebraic approach is by per-
forming the equivalent of PCA for order statistics which in conjunction
with PCA is often enough to do the job. In the order we are now facing the
equivalent of the covariance matrix, which is the quadricovariance tensor.
Diagonalizing this entity is much more complicated than performing eigenan-
alysis, it is however possible (Cardoso 1990) and often a good approximation
for ICA. More details about ICA and available algorithms are available in
Hyvärinen (1999).

3 AUDITORY PREPROCESSING

The use of harmonic decompositions for auditory processing has had a
long history and many successful applications. However the reason for using
such transforms has never been clearly justified, neither in the computational
nor on the perceptual domain. In this section we will present some evidence as
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to why localized sinusoids are good bases for auditory analysis and we’ll
relate that to the development of the cochlea and the evolution of computa-
tional auditory decomposition algorithms ranging from the DCT to the Gabor
wavelets.

The use of harmonic basis functions came to light with the introduction of
the Fourier transform by Jean-Baptiste Joseph Fourier, early in the 19th cen-
tury. After the introduction of the FFT algorithm in the 1950’s and further
work on the statistical significance on the DCT, harmonic analysis decompo-
sitions became very popular and were shortly expanded so as to address many
computational issues. By now we have seen the field of time/frequency analy-
sis burgeon providing a very rich selection of choices satisfying various
conditions that often arise in auditory modeling. In our work we set forth to
address the question of why these harmonic transforms are so useful. We will
not do this using mathematical analysis (as has been done by many in the
past), but rather from an evolutionary audition perspective. We will base our
work on a redundancy reduction principle that has been the staple of many
perceptual evolution theories, and we will attempt to “evolve a cochlea” based
on exposure to natural sounds.

The framework of our work is based on a simple rule, we seek to find a
linear transformation (such as PCA and ICA) that will attempt to produce a
non-redundant projection of incoming auditory data. To define the process
more concretely, we will start with a ‘training’ sound s(t). In order to be able
to impose a linear transform on it we will segment it as a set of time windows
using the vector formulation In which case N is an
integer representing the length of our windows. In this form we can represent
the linear transform we are about to perform as a matrix multiplication, x(t) =
W · s(t). Where W is a N×N matrix. Had this matrix been a DFT or DCT
matrix this would have been the respective transform for each window. For
our interests we want to find a custom transform W to remove redundancy
from the data x(t). This can be achieved in various ways, we choose to employ
an Independent Component Analysis (ICA) algorithm to do this.

For our experiments we used fifty single sentence samples from the
TIMIT speech database as the sound S, and employed the Amari algorithm
(Amari et al 1996), to extract to perform ICA. Numerical simulations pro-
vided us with the desired matrix/transformation W. The columns of this
matrix W, will contain the auditory components (or basis functions) that
decompose the incoming sound data in this sparse way. In Figure 7.1 we pro-
vide time plots of some basis functions, and the energy of all the bases on the
time/frequency plane. It is clear to see that the components are localized sinu-
soids (localized in both time and frequency), which also exhibit a time
frequency trade-off akin to a Gabor transform. The important point to make
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here is that without any external hints we have deduced that in statistical
terms time–localized sinusoids with time/frequency trade-off behavior are
optimal in terms of removing redundancy across audio data. This fact makes
them an optimal feature decomposition for extracting any information from
an input sound.

Similar work has been done in deriving the DFT and DCT family trans-
forms from PCA, however no time localization or time/frequency trade-off
were observed in these cases which provided long bases covering the entire
input window (Ahmed 1974, Rao and Yip 1990).

The importance of these results is twofold, first of all we are provided with
experimental proof as to why time localized harmonic representations with
the appropriate time/frequency trade-off are useful for sound analysis. On the
other hand we present a procedure that adheres to modern theories on compu-
tational and neurobiological perception, where the goal of the perceptual
system is assumed to be that of a redundancy–reducing machine. Based on
these theories we can make an argument for the evolution of the cochlea as a
frequency transform, being guided by such a principle. Similar work on the
visual domain has yielded basis functions similar to the ones measured on the
retina, and the V1 and V2 brain regions (Deco and Obradovic 1996,
Olshausen and Field 1996). What is interesting here is that by using other
types of stimuli we can obtain bases that are suited for these signals. For
example using music an the input we obtain longer in time bases, which mir-
ror the sustaining note aspects of musical notes, using natural sounds, which
have a shorter time scale than speech or music, results in more narrow in time
sinusoids. Likewise the frequency content of the input signal is also somewhat
mirrored by the density of the recovered bases in frequency.

Figure 7.1. Plots of ICA bases. In the left figure we see the time plots of randomly selected
bases. Although approximate, the bases clearly are based on localized sinusoids of varying
frequencies and time positions. In the right figure we see the energy of the bases in the time/
frequency plane. Note how the bases of the lower frequencies have a different time/frequency
spread ratio from the higher frequency bases.
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4 GROUPING

Grouping of basic elements, such as the ones we derived above, is often
used as a natural next step to performing source separation or scene analysis.
The input sound is broken down by a basis decomposition, and the resulting
elements can be separated and picked according to preset rules so as to recon-
struct individual parts of the scene. Unfortunately for the engineering–
minded, the rules that we often find to dictate proper grouping are heuristic in
nature and hard to implement or to describe mathematically. In this section we
will describe a more mathematically precise way to deal with grouping.

As we did before we will once more try to exploit the statistical structure
of sounds. This time we will explore some of the basic grouping rules and
show how they can be unified under one principle. To do so we will use the
notion of redundancy once again. As described above, redundancy is a mea-
sure that can mirror the amount of structure in data so that more redundancy
implies more structure, and vice-versa. Redundancy can be measured in terms
of mutual information, a statistical measure that describes how much informa-
tion is shared between multiple signals. Using mutual information as an
indication of structure and redundancy we can set up a set of experiments on
auditory grouping.

We set up an experiment as follows, we construct a simple scene describ-
ing an auditory grouping criterion. For example consider the scene: s(n,t) =
[cos(t) cos(n·t)], it contains two sinusoids, with a frequency ratio of n. We
change the parameter n and for each value we measure the mutual information
between the two resulting sinusoids. From our knowledge of auditory group-
ing we know that if two sinusoids are harmonically related they tend to fuse as
one sound. So if mutual information was a good way to judge grouping, we
should see some unique behavior for integer values of n. And so is the case by
observing Figure 7.2. Whenever mutual information peaks we have a case
where grouping is more likely to occur. We also demonstrate selected exam-
ples of other forms of grouping in Figures 7.3, 7.4 and 7.5. In all cases we see
a strong correlation between mutual information peaking and psychoacousti-
cal expectation for fusion, which leads us to believe that mutual information is
a good cost function by which to evaluate grouping.
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Figure 7.2. Mutual information as a function of harmonicity between two sinusoids. Note that
it peaks for integer values of frequency ratios, which are the points where auditory grouping is
most likely to occur. Intermediate peaks correspond to the case where the two sinusoids assume
the ratios between two higher harmonics of an assumed sound. Also note how mutual informa-
tion drops as the tones are still harmonic but by a large ratio. Inserting missing harmonics
boosts mutual information in that case.

Figure 7.3. Mutual information as a function of common amplitude modulation. Two
amplitude modulated tones were used, the parameter n is a distance measuring their modulation
dissimilarity. For n = 0 the modulations were identical, and became more different with
increasing magnitudes of n. Note how the mutual information peaks at the common
modulation.
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Figure 7.4. Just as the example in Figure 7.3 this time we measure frequency modulation. The
parameter n is again a distance between the two modulating functions. At the point where the
modulations become identical and the tones tend to fuse we have a mutual information peak.

Figure 7.5. Mutual information measurements as a function of common onset. Two tones were
used, one starting at time 0.5. The parameter n is the starting time of the second tone. The
mutual information peak is at the point where the two tones start at the same time.
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This observed relation between signal redundancy and grouping rules can
be used to our advantage by constructing algorithms that can perform group-
ing by minimizing mutual information. One such example is the family of
ICA algorithms, which can be easily adapted to perform grouping (Smaragdis
2001). Although this presents a more elegant methodology for grouping, the
really interesting fact is that this is the same process that led us to sinusoidal
bases in the previous section. By observation of the statistics of sound and by
application of the same algorithms we have automatically deduced known
information about two major functions about our auditory system.

5 SCENE ANALYSIS

Preprocessing and grouping are often used as first stages for scene analy-
sis. So far we demonstrated how we can take advantage of the regularity of
sound to perform these first stages, now we will demonstrate how we can do
the same thing again for scene analysis.

Scene analysis is a very hard problem, and the reason it is so is mostly
because it is usually ill-defined. In this work we will define scene analysis as
the problem of identifying sources in a scene and being able to pinpoint them
in time and by their spectral shape. As a side–effect we will have the ability to
reconstruct individual sources, this however is not the primary goal. This is a
simplified model which does not take into account a lot of the temporal struc-
ture, but as we’ll demonstrate that it is capable of performing very well on
real–world scenes.

Once again we will use the notion of statistical regularity to extract the
information we want. We start from a magnitude spectrogram F of a scene
s(t). We have and we can ‘collect’ all
f(t), in an M×N matrix F so that F = [f(1) ... f(N)]. This time we will apply
PCA on F, to reduce the number of dimensions to K, and then we will apply
ICA to force these K dimensions to be independent. The entire process can be
summarized by one linear transformation A, such that the independent data H
will result from H = A · F. With some manipulation we rewrite this as

where Given that the input data is non-negative
(being magnitude spectra), we could also employ non-negative ICA (Plumb-
ley 2002), although it is not strictly necessary (Cichocki 2003).

Examining the product W · H we can interpret it as a components–based
synthesis. Each column of W is multiplied with each corresponding row of H
to produce a section of the spectrogram F. The sum of these sections will
define the overall approximation. If K = M, then the approximation will be
perfect, if K << M, then we see interesting behavior where the components in
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Figure 7.6. In the top figure we can see a spectrogram or a drums bar. We can visually see tour
instances of a bass drum at the low frequencies, two instances of a snare drum, two instances of
a harmonic-like instrument (a cowbell), and some high–frequency instances of the hi-hat. The
bottom figure displays a component decomposition of the spectrogram. Note how the elements
that composed the original scene have been approximated spectrally by the columns of W and
temporally by the rows of H (also note that the left plot is in log scale for better visualization,
but the extracted component spectra on the right are plotted in linear scale).
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the columns of W and the rows of H describe individual sources present in the
spectrogram. Consider the spectrogram scene in Figure 7.6, being the analysis
of a bar of drumming. Upon visual examination we can see that it is composed
of a variety of sources, each of which is a different drum. There is overlap
between the sources in the frequency and the time axes, so clean separation is
impossible. If we assume however that the resulting spectrogram is an addi-
tion of a set of spectrograms, each describing an individual source we can
model it using the aforementioned method. The results are shown in Figure
7.6.

Given that this type of decomposition can give us a spectral and temporal
description of the components that make up the input scene, we can attempt to
perform reconstruction by approximating the input spectrogram using only
one component at a time. This can easily be done by the multiplication of the
ith column of W with the ith row of H to extract the magnitude spectrogram
of the ith component. Figure 7.7 demonstrates the individual components
reconstruction for the scene in Figure 7.6. To make an audible reconstruction
we can use the phase of the original spectrogram and mask it by the amplitude
masks that are displayed in Figure 7.7.

Similarly we can analyze more complex scenes and derive multiple com-
ponents that construct the original input in terms of sources. The more the
number of components we request (in the form of the parameter K) the more
detailed the definition of the source becomes. If for example we had asked for
K=100 components in the above example we would be presented with ele-
ments that make up what we perceive to be sources in the scene. Since
defining a source exactly is the product of subjective judging it is hard to say
what an optimal setting for K would be.

In the case of speech signals this approach would extract features that cor-
respond to individual phonemes rather than the entire spoken content (this is a
side effect of the fact that we do not account for temporal continuity, although
it can be statistically argued that the sources are indeed the phonemes, and not
the entire spoken content). Piecing these components together it is possible to
reconstruct extracted speech.
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Figure 7.7. Spectrograms of the extracted components. Clockwise from top left, the high-hat,
the cowbell, the snare drum and the bass drum.

6 CONCLUSIONS

This report highlighted some of the intricate relationships between the sta-
tistics of natural sounds and auditory processing. We have argued that many
of the common steps that we often take to perform computational audition can
be seen as processes driven by the nature of sound, and not so as steps
inspired by human physiology or engineering. We have shown how different
aspects of hearing can be explained using a simple and common rule exploit-
ing the statistical structure of sound. Although the methods we employed are
very simple, the results are just as promising as using any other more complex
approach. We hope that the simplicity and the elegance of this approach will
inspire further work along these lines, and give rise to more investigations in
the field of computationally evolving audition.
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Chapter 8

Automatic Speech Processing by
Inference in Generative Models

Sam T. Roweis
Department of Computer Science, University of Toronto
roweis@cs.toronto.edu

1 INTRODUCTION

Say you want to perform some complex speech processing task. How
should you develop the algorithm that you eventually use? Traditionally, you
combine inspiration, carefully examination of previous work, and arduous
trial-and-error to invent a sequence of operations to apply to the input wave-
form or short–time spectral representation. But there is another approach:
dream up a “generative model” – a probabilistic machine which outputs data
in the same form as your data – in which the key quantities that you would
eventually like to compute appear as hidden (latent) variables. Now perform
inference in this model, estimating the hidden quantities. In doing so, the rules
of probability will derive for you, automatically, a signal processing algo-
rithm. While inference is well known to the speech community as a decoding
step for HMMs, exactly the same type of calculation can be performed in
many other models not related to recognition.

This chapter explores the use of inference in three separate models, and
shows how it can be used to perform surprisingly complex speech processing
tasks including denoising, source separation, pitch tracking, timescale modifi-
cation and estimation of articulatory movements from audio.

2 A FACTORIAL–MAX MODEL OF
LOG SPECTROGRAMS

In this section, we review the astonishing max approximation to log spec-
trograms of mixtures, show why this motivates a “refIltering” approach to
separation and denoising, and then describe how the process of inference in
factorial probabilistic models performs a computation useful for deriving the
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masking signals needed in refiltering. A particularly simple model, Factorial–
Max Vector Quantization (MAXVQ), is introduced along with a branch-and-
bound technique for efficient exact inference and applied to both additive
denoising and monaural separation. Our approach represents a return to the
ideas of Ephraim, Varga and Moore (Varga and Moore, 1990) but applied to
auditory scene analysis rather than to speech recognition.

2.1 Sparsity and Redundancy in Spectrograms
The sparse nature of the speech code across time and frequency is one of

the key features exploited by many successful speech processing algorithms.
Roughly speaking, most low noise narrow frequency bands carry substantial
energy only a small fraction of the time and thus it is rare that two indepen-
dent sources inject large amounts of energy into the same subband at the same
time. (Figure 8.1b shows a plot of the relative energy of two simultaneous
talkers in a narrow subband, most of the time at least one of the two sources
shows negligible power.)

The speech code is also redundant across time–frequency. Different fre-
quency bands carry, to a certain extent, independent information and so if
information in some bands is suppressed or masked, even for significant dura-
tions, other bands can fill in. (A similar effect occurs over time: if brief
sections of the signal are obscured, even across all bands, the speech is still
intelligible, while also useful, we do not exploit this here.) This is partly why
humans perform so well on many monaural speech separation and denoising
tasks. When we solve the cocktail party problem or recognize degraded
speech, we are doing structural analysis, or a kind of “perceptual grouping”

Figure 8.1. (left) Relationship between log of sum and max of logs, each function’s value is
shown using the color scale indicated in the middle. Significant differences occur only when

and both are large, (right) Relative energy of two sources in a single subband, few
points appear on the diagonal.
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on the incoming sound. There is substantial evidence that the appropriate sub-
parts of an audio signal for use in grouping may be narrow frequency bands
over short times.

2.1.1 The Log–Max Approximation.
When two clean speech signals are mixed additively in the time domain,

what is the relationship between the individual log spectrograms of the
sources and the log spectrogram of the mixture? Unless the sources are highly
dependent (synchronized), the log spectrogram of the mixture is almost
exactly the maximum of the individual log spectrograms, with the maximum
operating over small time–frequency regions (fig. 8.2). This amazing fact,
first noted by Roger Moore in 1983, comes from the fact that unless and
are both large and almost equal, (fig. 8.1a).

The sparsity of the speech code is what makes this approximation useful in
practice, since the approximation only breaks down when two sources put a
large amount of energy into the same narrow frequency band at the same time,
which rarely occurs.

2.1.2 Masking and Refiltering.

To exploit the redundancy of the speech code, we will focus on narrow
frequency bands over short times and try to group these \subparts” of the sig-
nal together, based on whether they belong to the same source or not. If we
can collect enough parts that we are confident belong together, we can discard
the rest of the signal and recover the original source based only on the
grouped parts.

To generate these parts computationally, we can perform multiband analy-
sis – break the original speech signal y(t) into many subband signals
each filtered to contain only energy from a small portion of the spectrum. The
results of such an analysis are often displayed as a spectrogram which shows
log energy (using color or grayscale) as a function of time and frequency.
(Think of a spectrogram like a musical score in which the color or grey level
of the each note tells you how hard to hit the piano key.)
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Figure 8.2. (top) Log spectrogram of amixture of two sources. (bottom) Elementwise
maximum (within each time–frequency b in) of log spectrograms of original sources. The two
spectrograms are almost identical, although the bottom one is an approximation of what the top
one ought to looklike based on a very simple combination model.

The basic idea of refiltering (Roweis, 2001, Green et al., 2001) is to sepa-
rate or denoise sources by selectively reweighting the obtained from
multiband analysis of the original mixed or corrupted recording. Crucially,
unlike in unmixing algorithms, the reweighting is not constant over time, it is
controlled by a set of masking signals. Given a set of masking signals,
denoted a clean source can be recovered by modulating the corre-
sponding subband signals from the original input and summing:

The are gain knobs on each subband that we can twist over time to
bring bands in and out of the source as needed. This performs masking on the



Chapter 8: Automatic Speech Processing by Probabilistic Inference 101

original spectrogram.1 This approach, illustrated in figure 8.3, forms the basis
of many CASA systems (Green et al., 2001, Brown and Cooke, 1994). The
basic intuition is to “gate in” subbands deemed to have high signal to noise
and to be part of the source we are trying to separate and “gate out” subbands
when they are deemed to be noisy or part of another source.

For any specific choice of masking signals refiltering attempts to
isolate a single clean source from the input signal and suppress all other
sources and background noises. Different sources can be isolated by choosing
a different set of masking signals. Although, in general, masking signals are
real–valued, positive quantities that may take on values greater than unity, in
practice the (strong) simplifying assumption that are binary and constant
over a timescale of roughly 30ms can be made. This assumption is physi-
cally unrealistic, because the energy in each small region of time–frequency
never comes entirely from a single source. However, for small numbers of
sources, this approximation works quite well (Roweis, 2001), in part because
of the effect illustrated in figure 8.1b. (Think of ignoring collisions by assum-
ing separate piano players do not often hit the same note at the same time.)
(Refiltering can also be thought of as a highly nonstationary Wiener filter in
which both the signal and noise spectra are re-estimated at a rate the
binary assumption is equivalent to assuming that over a timescale the signal
and noise spectra are nonoverlapping.) It is a fortunate empirical fact that
refiltering, even with piecewise constant binary masking signals, can cleanly
separate sources from a single mixed recording.2

2.2 Multiband grouping as a statistical
pattern recognition problem

Since refiltering for separation and denoising is indeed possible if the
masking signals are well chosen, the essential statistical problem is: how can
the be computed automatically from a single input recording? The goal
is to group together regions of the spectrogram that belong to the same audi-
tory object (and have high signal-to-noise). Fortunately, natural auditory
signals – especially speech – exhibit a lot of regularity in the way energy is
distributed across the time–frequency plane. Grouping cues based on these
regularities have been studied by psychophysicists and are hand built into
many CASA systems. Cues are based on the idea of suspicious coincidences:
roughly, “things that move together likely belong together”. Thus, frequencies
which exhibit common onsets, offsets, or upward/downward sweeps are more
likely to be grouped into the same stream. Also, many real world sounds have
harmonic spectra, so frequencies which lie exactly on a harmonic “stack” are
often perceptually grouped together. (Musically, piano players do not hit keys
randomly, but instead use chords and repeated melodies.) The approach advo-
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cated here to use statistical learning methods to discover these regularities
from a large amount of speech data and then to use the learned models to
compute the masking signals for new signals in order to perform refiltering.

2.2.3 MAXVQ: Factorial–Max Vector Quantization.

It is often advantageous to model complicated sensory observations using
a number of separate but interacting causes. One general way to pursue this
modeling idea is to have a fixed number M of vector quantizers (or mixture
models), each of which proposes an output, and then have some way of com-
bining the output proposals into a final observation. We can think of this as a
bank of quantizers, which feed their chosen prototypes into a nonlinear com-
bination box that computes the final output.3

Motivated by the observation above regarding the max approximation to
log spectrograms of mixtures, we propose such a model, called Factorial–Max
Vector Quantization (MAXVQ), which uses the Max operation to combine
outputs from the various causes. The model has a bank of M independent vec-
tor quantizers, each of which stochastically selects a prototype with which to
model the observation vector. The final output vector is a noisy composite of
the set of proposed prototypes, obtained by taking the elementwise maximum
of the set and adding nonnegative noise. This generative model is illustrated
in figure 8.4.

Figure 8.3. Refiltering for separation and denoising. Multiband analysis of the original signal
y(t) gives sub-band signals which are modulated by masking signals (binary or real
valued between 0 and 1) and recombined to give an estimated source s(t).
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Figure 8.4. Generative model for the Factorial–MAX model. Each of M quantizers selects its
codebook vector and these are combined using elementwise maximum to produce

the final output x.

The MAXVQ model is useful in situations where there are multiple
“objects”, “sources” or “causes” in the world but there is some kind of occlu-
sion or sparseness governing how the sources interact to produce
observations. For example, as noted above, in clean speech recordings, the log
spectrogram of a mixture of speakers is almost exactly the elementwise maxi-
mum of the log spectrograms of the individual speakers. For noisy mixtures of
speech signals, each clean speaker and each noise source can be thought of as
an independent cause contributing to the observed signal. We will use the
short–time log power in linearly spaced narrow frequency bands as our vec-
tors when analyzing speech with this model. (As another example, in range
finding using laser or acoustic sensors, the distance reading in any direction is
the minimum of the distances of all objects from the sensor in that direction.)

Formally, MAXVQ is a latent variable probabilistic model for D-dimen-
sional data vectors x. The model consists of M vector quantizers, each with
codebook vectors Latent variables control which codebook
vector each vector quantizer selects. Given these selections, the final output x
is generated as a noisy version of the elementwise maximum of the selected
codewords. If we assume that the each vector quantizer chooses its codebook
entries independently with fixed rates then the model can be written as:
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where are latent variables, are the codebook vectors, are noise vari-
ances (shared across k), and M, are structural size parameters chosen to
control complexity. The distribution N+ is the positive side of a Gaussian.

MAXVQ can be thought of as an exponentially large mixture of positive
Gaussians having components, with the mean of each component
constrained to be the elementwise max of some underlying parameters
This technique, of representing an exponentially large codebook using a fac-
torial expansion of a small number of underlying parameters has been very
influential and successful in recent machine learning algorithms (Jojic and
Frey, 2000, Ross and Zemel, 2003).

This model can also be extended through time to generate a Factorial–Max
Hidden Markov Model (Roweis, 2001, Varga and Moore, 1990). There are
some additional complexities, and the details of the heuristics used for infer-
ence are slightly different but in our experience the frame–independent
MAXVQ model performs almost as well and so for simplicity, we will not
discuss the full HMM model.

2.2.4 Parameter Estimation from Isolated Sources.

Given some isolated (clean) recordings of individual speech or noise
sources, we can estimate the codebook means noise variances and the
selection probabilities associated with the source’s model by training a
mixture density or a vector quantizer on the columns of a short–time narrow-
band log spectrogram. Some care must be taken in training to properly obey
the nonnegativity assumption on the noise and to avoid too many codebook
entries (mixture components) representing low energy (silent) segments
(which are numerous in the data). Also, it is often advantageous to represent
two or more adjacent (in time) columns of the spectrogram as a single input
vector to allow the model to take some small advantage of temporal
continuity.
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2.2.5 Inference for Refiltering.

The key idea in this section is that the process of inference (i.e. deducing
the values of the hidden variables given the parameters and observations) in a
MAXVQ model performs a computation which is extremely useful for com-
puting the masking signals required to perform refiltering for denoising or
separation. Because the number of possible joint settings of the hidden selec-
tion variables z is exponentially large, we are usually only interested in
finding the single most likely (MAP) setting of z given x or the N-best set-
tings. (For unsupervised learning and likelihood computations we may also be
interested in efficiently summing over all possible joint settings of z to com-
pute the marginal likelihood of a given observation x.) Computing these
Viterbi settings (or the sum) is intractable either by direct summation or by
naive dynamic programming because of the factorial nature of the model. We
must resort to branch-and-bound algorithms for efficient decoding or else
approximations (e.g. variational methods) to estimate likely settings of z.

Once we have computed the MAP (or approximate) setting of z, we can
use this to estimate the refiltering masking signals as follows: for each (over-
lapping) frame of the input spectrogram, set the masking signal to unity for
every frequency at which the output proposed by the model corresponding to
the source to be recovered is the maximum proposal over all models. Other
frequencies have their masks set to zero. Actual refiltering is then performed
by retaining the phase from the spectrogram of the original (noisy/mixed)
recording, applying the (binary) masking signals to the log magnitude of each
frequency, and reconstituting the clean signal using overlap-and-add recon-
struction. The windowing function used to compute the original spectrogram
must be known (or estimated) in order to remove its effect properly during
refiltering.

2.2.6 Branch-and-Bound for Efficient Inference.

As discussed above, naive computation of the MAP joint settings of the
hidden selection variables in MAXVQ is exponentially expensive. Fortu-
nately, there is a clever branch and bound trick which can be used, based on
the following observation: if we can upper bound the log likelihood we
can achieve on a data case x, no matter what values the other take on.
The bound is constructed as follows (using constant for
simplicity):
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where [r]+ takes the max of zero and r. The intuition is that either is
greater than x along a certain dimension d of the output, in which case the
error will be at least or else it is less than x along dimension d in
which case the error on that dimension could potentially be zero.

This bound can be used to quickly search for the MAP setting of z given x
as follows. For each and each compute the bound

Initially set the guess of the best configuration to the settings with the
best bounds: and compute the true likelihood achieved by
that guess: Now, for each we can eliminate all k
for which . In other words, we can definitively say that certain code-
book choices are impossible for certain models, independent of what other
models choose because they would incur a minimum error worse that what
has already been achieved. Now, for each m, and for all possible settings of k
that remain for that m, systematically evaluate and if it is less than
l* , eliminate the setting. If the likelihood is greater than l*, we accept it as the
new best setting and reset z* and l*, we also re-eliminate all settings of k that
are now invalid because of this improved bound, and repeat until all settings
have been either pruned or checked explicitly. This method is guaranteed to
find the exact MAP setting, but it comes with no guarantees about its time
complexity. In practice, however, we have found it to prune very aggressively
and almost always find the MAP configuration in reasonable time. This tech-
nique is illustrated in figure 8.5.

2.3 Experiments with Factorial–MAX VQ

As an illustration of the methods presented above, we performed simple
denoising and separation experiments using TIMIT prompts read by a single
speaker and noise (babble) from the NOISEX database. Narrowband spectro-
grams we constructed from isolated, clean training examples of the speaker
and noise. (Signals were downsampled to 12.5kHz, frames of length 512 were
used with Hanning windows and frame shifts of 64 samples, resulting in one
257-vector of log energies each 5ms representing the signal over the last
40ms.) A simple vector–quantization codebook with 512 codewords was
trained on the speech and one with 32 codewords was trained on the noise.
Approximately 5 minutes of speech (with low energy frames eliminated) and
100 seconds of noise were used for training. A modified k-means algorithm
which includes split-and-merge heuristics for finding good local optima was
used. (We have also experimented with training \scaled” vector quantizers
which cluster onto rays in the input space rather than on points, although this
technique was not used in the results below.) The trained models were then
used to perform MAXVQ inference on previously unseen test data, using the
branch-and-bound technique. Based on this inference, refiltering was per-
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formed as described above to recover clean/isolated sources. In the denoising
experiment, a 6 second speech segment was linearly mixed with 6 seconds of
babble noise at 0dB SNR (equal power). Figure 8.6 shows the results of
denoising with MAXVQ and also with a simple spectral subtraction trained
on the same isolated noise sample as used for the VQ model. For the separa-
tion experiment, two different utterances, spoken by the same speaker, were
mixed at equal power and the speech model was used (symmetrically) to per-
form MAXVQ inference. The results of this monaural separation are shown in
figure 8.7. Of course, these results do not represent state of the art perfor-
mance on either denoising or separation tasks, they are merely a proof of
concept that the marriage of refiltering and inference in factorial models can
be used for powerful speech processing tasks.

Figure 8.5. Branch and bound inference trick for a factorial–max VQ model with M = 2 quan-
tizers. For each codebook selection that quantizer i could make, it is possible to compute a
bound on the error (likelihood), regardless of the choice made by quantizer j. Similarly, for
each codebook selection that j can make a bound (independent of i’s choice) can be calculated.
The current best joint selection of i and j is instantiated (shown by an x in the diagram), and its
true error (likelihood) is computed. Any choices for either quantizer which are worse than this
already achieved value are eliminated since they cannot possibly be involved in the MAP
configuration. Remaining valid choices are explored, ordered by their bound values (indicated
by ? in the diagram). Once all choices have either been explored or eliminated, we are
guaranteed to have found the MAP configuration.
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Figure 8.6. Denoising using MAXVQ. Top row: noisy input, original clean source. Middle
row: spectral subtraction estimate (trained on isolated noise), MAXVQ estimate after exact
branch-and-bound inference and refiltering (trained on isolated speech and noise). Bottom row:
proposed codebook output sequence from noise model, proposed codebook output sequence
from speech model.

2.4 MAXVQ: Discussion, Related and Future Work

We have argued that the refiltering approach to separation and denoising
can be successfully achieved by using the inference step in a factorial model
to provide the masking signals. Varga and Moore (Varga and Moore, 1990)
proposed a factorial model for spectrograms (focusing on the factorial nature
and using the log–max approximation) as did Gales and Young (Gales and
Young, 1996) (focusing on the combination operation) but these models were
used for speech recognition in the presence of noise only, and not for refilter-
ing to do separation and denoising. In a series of papers, Green et.al. (Green et
al., 2001) have studied masking (refiltering) for denoising, but do not employ
factorial model inference as an engine for finding masking signals. There
have also been several approaches to monaural separation and denoising that
operate mainly in the time domain, without using refiltering or factorial mod-
els. Cauwenberghs (Cauwenberghs, 1999) investigated separation based on
maximizing periodic coherence, Wan and Nelson (Wan and Nelson, 1998)
use nonlinear autoregressive networks and extended Kalman filtering.
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Figure 8.7. Monaural separation using MAXVQ. Top row: narrowband spectrogram of mixed
input containing two different utterances spoken simultaneously by the same speaker. Second
row: original isolated utterances. Third row: MAXVQ estimates of original utterances after
exact branch-and-bound inference and refiltering (trained on isolated speech, not including this
test example). Bottom row: proposed codebook output sequence for each stream.

Our work here and previously (Roweis, 2001) is closest in spirit to that of
Ephraim et.al. (Ephraim et al., 1989) who model speech using a HMM and
noise using an AR model and then attempt to approximately infer the clean
speech by alternating between Wiener filtering to find the noise and Viterbi
decoding in the HMM. Logan and Moreno (Logan and Moreno, 1998) also
investigated the use of factorial HMMs for modeling speech and found stan-
dard HMMs to be just as good, but they did not compose their model using the
max of two underlying models, rather they learned separate parameters for
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each combination of states. Reyes et.al. (Reyes et al., 2003) investigated fac-
torial HMMs for separation but using multi-channel inputs.

The main challenge for future work is to develop techniques for learning
from only mixed/noisy data, without requiring clean, isolated examples of
individual sources or noises at training time. In a maximum likelihood formu-
lation of this purely unsupervised learning setup, we would be given many
realizations of x from the model, assumed to be IID, and we
attempt to adjust the model parameters so as to make the observed data more
likely. Using the view proposed above, in which MAXVQ is seen as a very
large mixture of Gaussians with parameter tying on the means, we can learn
the parameters of a MAXVQ model using the standard EM algorithm for
maximum likelihood. However, this requires summing over all possible
settings of z explicitly. If is small enough for this to be feasible, then this
is one possible way to do learning. Otherwise, approximate inference tech-
niques must be used to allow tractable computations.

Along this line, we are investigating a technique which gives approximate
rather than exact answers but has a fixed and known time complexity. This
idea is to introduce a factorized variational distribution which tries to approx-
imate the true (joint) posterior as well as possible. In this setup, we
approximate the true posterior with a factorized posterior

and proceed to find the functions which maximize a
lower bound on the data likelihood.

3 A SEGMENTAL HMM
FOR SPEECH WAVEFORMS

In the following section, we turn our attention to another simple generative
model, this time one which operates directly on the speech waveform. Pursu-
ing inference in this model leads to a purely time domain approach to pitch
processing which identifies waveform samples at the boundaries between
glottal pulse periods (in voiced speech) or at the boundaries between unvoiced
segments. An efficient algorithm for inferring these boundaries is derived
from a simple probabilistic generative model for segments, which gives excel-
lent results on pitch tracking, voiced/unvoiced detection and timescale
modification.

3.1 Speech Segments in the Time Domain

Processing of speech signals directly in the time domain is commonly
regarded to be difficult and unstable, due to fact that perceptually very similar

110
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utterances exhibit very large variability in their raw waveforms. As a result,
by far the most common preprocessing step for most speech systems is to con-
vert the raw waveform into a time–frequency representation, using a variety
of spectral analysis and filterbank techniques. In this section we explore a
purely time domain approach to speech processing in which we identify the
samples at the boundaries between glottal pulse periods (in voiced speech) or
at the boundaries between unvoiced segments of similar spectral shape.

Having identified these segment boundaries, we can perform a variety of
important low level speech analysis and manipulation operations directly and
conveniently. For example, we make a voiced/unvoiced decision on each seg-
ment by examining the periodicity of the waveform in that segment only. In
voiced segments we can estimate the pitch as the reciprocal of the segment
length. Timescale modification without pitch or format distortion can be
achieved by stochastically eliminating or replicating segments in the time
domain directly. More sophisticated operations, such as pitch modification,
gender and voice conversion, and companding (volume equalization) are also
naturally performed by operating on waveform segments one by one without
the need for a cepstral or other such representation. In effect, our model chops
up the original speech wave into natural “atomic” units which can be exam-
ined or manipulated in very flexible ways.

The computational challenge with this approach is in efficiently and
robustly identifying the segment boundaries, across silence, unvoiced and
voiced segments. In this section we describe a segmental Hidden Markov
Model (Achan et al., 2004), defined on variable length sections of the time
domain waveform, and show that performing inference in this model allows
us to identify segment boundaries and achieve excellent results on the speech
processing tasks described above.

3.2 A probabilistic generative model of
time–domain speech segments

The goal of our algorithm is to break the time domain speech signal
into a set of segments, each of which corresponds to a glottal pulse

period or a segment of unvoiced colored noise. Let denote the time index of
the beginning of the segment and denote the waveform
in the segment, where k=1,...,K indexes segments. Our algorithm searches
for the segment boundaries, so that each segment can be accu-
rately modeled as a time–warped, amplitude–scaled and amplitude–shifted
version of the previous segment. We denote the transformation used to map
segment into segment by

Given the segment boundaries and the transformations
we assume the probability of each segment depends only on the previous seg-
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ment and the transformation for that segment: in other words we assume the
segments are generated by first order Markov chain:

Each segment is modeled as a noisy copy of the transformed version of the
previous segment. These assumptions simplify the inference and estimation
algorithm described below. Of course, number of segments and the segment
boundaries are unknown and must be inferred from the speech wave: this
inference is the main computation performed by our algorithm.

For concreteness, we assume that each successive segment is equal to a
transformed version of the previous segment, plus isotropic, zero–mean nor-
mal noise with variance . Denoting the transformed version of segment k–1
by the conditional probability density of is:

The noise levels are estimated automatically by the inference
procedure along with the segment boundaries (As the boundary condition of
the Markov chain, we assume that the segment before the first is a vector of
all zeros and hence the probability density of the initial segment is
given by . We also set equal to the variance of all
time–domain samples, since a priori we do not know what the content of the
initial segment should be.)

We assume that the boundaries and transformations are independent, and
that the prior distribution over transformations is uniform on some bounded
set. In our experiments, we parameterize the transformation by
where and are time–warp, amplitude–scaling and amplitude–shift.
We use a prior that is uniform over a 3-dimensional hypercube that includes
all reasonable values for these parameters.

Generally the joint prior probability mass function on segment boundaries
can be quite complex. Since the computational complexity of the

inference algorithm will depend on the number of allowed configurations of
segment boundaries, we use a prior that is nonzero only on an appropriate
subset of configurations. In particular, we exploit a very simple heuristic (first
suggested by John Hopfield in 1998) by restricting segments to begin and end
only on zero crossings of the signal (or possibly only on upward or downward
going zero crossings). This restriction also allows arbitrary segments to be
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relocated beside each other and still preserve waveform continuity, which will
be important in our later applications. To further restrict the range of inferred
segment lengths, we require that where and
are the minimum and maximum segment lengths, satisfying
These minimum and maximum segment lengths are chosen to represent the
widest possible range of pitch periods we expect to see in our signals. We
assume the probability is otherwise uniform, subject to the
above constraints. The number of segments K is also unknown, and its opti-
mal value is inferred automatically as well. We assume that (the first
segment begins on the first signal sample) and that (the last seg-
ment ends on the last signal sample).

The joint distribution over segments, segment boundaries and transforma-
tions can now be written as:

where enforces the constraints on the boundaries, constraints
on the allowable limits of the time domain scale, amplitude–domain scale and
amplitude–domain shift are enforced by although these con-
straints rarely affect the optimization.

3.3 Using dynamic programming to efficiently infer
segment boundaries and transformations

Given a time–domain signal, the computational task now at hand is to
determine the segment boundaries and transformations. Of course, the num-
ber of valid configurations of the boundary variables is exponential in the
length of the waveform, so exhaustive search would be intractable. Fortu-
nately, the optimal segmentation (which maximizes likelihood, or
equivalently, minimizes the mismatch penalties) can be found using a gener-
alized dynamic programming algorithm.

Figure 8.8. (top) Input signal, notice the transition from unvoiced to voiced region.
(bottom) Inferred maximum likelihood segmentation found using generalized dynamic pro-
gramming. The upward arrows are used to mark the inferred segment boundaries.
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First, note that according to 1.5, given the boundary variables, the MAP
estimates of the transformations can be computed locally:

In particular, the time–warping is unique and is given by
The warped version of is denoted by and can be obtained

using standard signal processing techniques for time–domain interpolation or
decimation. Note that whereas contains samples, contains

samples. The amplitude–domain scale and shift are obtained by
performing a least–squares regression of onto i.e. by solving

where (j) indexes the elements of and After optimizing and the
estimate of the variance is set to the argument in the above minimization,
divided by For a given configuration of we denote the
optimal transformation obtained in the above fashion by

Thus, the search is one over boundary segment positions, which for effi-
ciency we constrain to lie only at (just after) zero crossings of the waveform.
Finding the optimal segmentation requires performing dynamic program-
ming, using a table indexed with two adjacent boundary points. In order to
make the optimization Markovian, we must actually consider adjacent pairs
of boundary points as the states in the dynamic programming. In par-
ticular, we fill in a table C whose entry C(m,n) holds the best possible log
likelihood of the segmentation ending with the segment defined by the
zero crossing at its left edge and the zero crossing at its right edge. We can
iteratively fill in this table forwards for all values m<n, by using the following
recursion:

3.4 Segmental HMM Experiments

We have applied our segmental inference procedure to clean, wideband
recordings of single–talker speech, from both males and females taken from
the Keele pitch reference dataset (Plante et al., 1995) and from the Wall Street
Journal (WSJ) corpus. Dynamic programming was applied with segment
length thresholds of and (corresponding to pitch range
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of 40Hz-333Hz) to find the optimal segmentation of the raw waveforms
directly.

We can apply the results of our segment inference algorithm to a wide
range of speech processing tasks, as discussed below. By replicating or delet-
ing some or all of the inferred segments, we can easily achieve high quality
timescale modification without changing the perceived pitch or formant struc-
ture of the utterance. By examining the periodicity of each segment, we can
attempt to distinguish voiced from unvoiced portions of the waveform. In
voiced regions, we can directly estimate the pitch by taking the reciprocal of
the segment length. Below, we present results on timescale modification,
voiced/unvoiced discrimination, and pitch tracking. Other applications such
as gender and voice conversion, companding and concert hall effects are also
possible. We emphasize that all the experiments were performed in time
domain using the inferred pitch periods.

3.4.1 Voicing Detection and Pitch Tracking.
For voicing detection and pitch tracking, we evaluated the estimates

obtained using our algorithm using the Keele dataset, since it has ground truth
values for these quantities. (In particular, the Keele data has utterances spoken
by both male and female speakers and includes a reference estimate for the
fundamental frequency at a resolution of 10ms. Each utterance is approxi-
mately 30 seconds long and the sampling frequency is 20kHz.)

Once the waveform segments are inferred by the algorithm, we can esti-
mate the periodicity of each segment in a simple way by computing the
discrete Fourier transform of the segment waveform and then reconstructing it
using a limited number of Fourier coefficients. (This is illustrated in figure
8.9.)

Figure 8.9. Simple voicing detection given waveform segmentation. Each segment is recon-
structed using a small number of Fourier coefficients. Segments whose reconstruction error is
below some threshold (and whose energy is above the silence threshold) are tagged as voiced.
Examples above show typical voiced (left) and unvoiced (right) segments and their
reconstructions.
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Figure 8.10. (top) Pitch estimates using segmental HMM for a female speaker in the Keele
dataset. Notice that the inferred pitch (red circle) consistently agrees with the reference
provided (blue plus mark). Further, our approach clearly discriminates between voiced/
unvoiced regions (samples without reference estimates are unvoiced). (center) input time
domain signal (bottom) spectrogram of input.

Since unvoiced regions tend to be much less periodic, they will have a
substantially larger reconstruction error than voiced regions and by selecting
an appropriate threshold, we can discriminate between voiced and unvoiced
segments. Our method was able to correctly identify 87.2% of the voiced seg-
ments averaged over all the 10 utterances of males and females in the Keele
dataset. In Fig. 8.10, the true unvoiced regions are the segments without any
reference pitch shown, and the unvoiced regions detected by our algorithm are
those without estimated pitches.

Pitch tracking is trivially achieved by taking the reciprocal of the segment
lengths in the voiced regions. Results for a single utterance in the Keele
dataset spoken by a female speaker is shown in Fig. 8.10. Pitch estimates
obtained using our approach are very consistent with the reference estimates,
similar performance was obtained on other utterances in the dataset as well.
Averaged over 10 utterances the median absolute pitch error was 9Hz.
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Figure 8.11. (Middle and Top) Time domain signal and the corresponding spectrogram
(Bottom) The spectrogram of the signal is marked with the pitch estimates obtained using our
algorithm (blue marker), for clarity we have marked only the first 10 integer multiples of the
fundamental frequency.

Figure 8.12. The spectrogram of time scale modified faster and slower versions of a signal are
shown. The actual time domain operation is shown on top for a particular time instant in the
spectrogram.
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It is well known that excitation for voiced speech manifests as sharp bursts
at integer multiples of fundamental frequency. In Fig. 8.11, we have shown a
few integer multiples of the fundamental frequency of a signal on its spectro-
gram using pitch estimates obtained from the application of our algorithm.

3.4.2 Time Scale Modification.

For timescale modification experiments, we have used utterances from the
WSJ corpus. Once the segments are identified by our algorithm, we can play
the signal twice as fast by deleting every other segment and concatenating the
remaining ones, similarly by replicating each segment we can achieve the
effect of playing the at half the speed (two times slower), this is further illus-
trated in Fig. 8.12. This approach is substantially different from methods such
as (Roucos and Wilgus, 1985) that manipulate spectrograms. By doing all of
our operations directly in the time domain we never need to worry about
inconsistent phase estimates.

3.5 Segmental HMM: Discussion and Conclusions

We have presented a simple segmental Hidden Markov Model for generat-
ing a speech waveform and derived an efficient algorithm for approximate
inference in the model. Applied to an observed signal, this inference algo-
rithm operates entirely in the time domain and is capable of identifying the
boundaries of glottal pulse periods in voiced speech and of unvoiced seg-
ments. Using these inferred boundaries we are able to easily and accurately
detect voicing, track pitch and modify the timescales. We are investigating
other possible applications of the same basic model, including voice conver-
sion, volume equalization and reverberant filtering.

4 CONSTRAINED HIDDEN MARKOV MODELS
FOR ARTICULATORY MODELING

Structured time–series are generated by systems whose underlying state
variables change in a continuous way but whose state to output mappings are
highly nonlinear, many to one and not smooth. Probabilistic unsupervised
learning for such sequences requires models with two essential features: latent
(hidden) variables and topology in those variables.

By thinking of each state in a hidden Markov model as corresponding to
some spatial region of a fictitious topology space it is possible to naturally
define neighbouring states of any state as those which are connected in that
space. The transition matrix of the HMM can then be constrained to allow
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Figure 8.13. Can you hear the shape of the mouth? The problem of recovering articulator
motions from acoustics is a classic inversion problem involving physics, speech science and
statistical signal processing.

transitions only between neighbours, this means that all valid state sequences
correspond to connected paths in the topology space. This strong constraint
makes structure discovery in sequences easier. We show how such con-
strained HMMs can learn to discover underlying structure in complex
sequences of high dimensional data, and apply them to the problem of recov-
ering mouth movements from acoustics in continuous speech. This problem
has a long history in speech science, and exemplifies exactly the sort of struc-
tured time series analysis problem discussed above.

4.1 Constrained HMMs as latent variable models

Hidden Markov models (HMMs) can be thought of as dynamic generaliza-
tions of discrete state static data models such as Gaussian mixtures, or as
discrete state versions of linear dynamical systems (LDSs) (which are them-
selves dynamic generalizations of continuous latent variable models such as
factor analysis). While both HMMs and LDSs provide probabilistic latent
variable models for time–series, both have important limitations. Traditional
HMMs have a very powerful model of the relationship between the underly-
ing state and the associated observations because each state stores a private
distribution over the output variables. This means that any change in the hid-
den state can cause arbitrarily complex changes in the output distribution.
However, it is extremely difficult to capture reasonable dynamics on the dis-
crete latent variable because in principle any state is reachable from any other
state at any time step and the next state depends only on the current state. This
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allows only “random jump” movement in the hidden state space. For exam-
ple, one well known difficulty is that the lifetime of any single state is
distributed according to a decaying exponential, which is often an inappropri-
ate distribution for state dwell times. LDSs, on the other hand, have an
extremely impoverished representation of the outputs as a function of the
latent variables since this transformation is restricted to be global and linear: a
single matrix captures the state to output mapping and it is applied uniformly
regardless of location in the state space. But it is somewhat easier to capture
state dynamics since the state is a multidimensional vector of continuous vari-
ables on which a matrix “ow” is acting, this enforces some continuity of the
latent variables across time. Constrained hidden Markov models (Roweis,
2000) address the modeling of state dynamics by building some topology into
the hidden state representation. The essential idea is to constrain the transition
parameters of a conventional HMM so that the discrete–alued hidden state
evolves in a structured way.6 In particular, below we consider parameter
restrictions which constrain the state to evolve as a discretized version of a
continuous multivariate variable, i.e. so that it inscribes only connected paths
in some space. This lends a physical interpretation to the discrete state trajec-
tories in an HMM.

4.2 An illustrative game

Consider playing the following game: divide a sheet of paper into several
contiguous, non-overlapping regions which between them cover it entirely. In
each region inscribe a symbol, allowing symbols to be repeated in different
regions. Place a pencil on the sheet and move it around, reading out (in order)
the symbols in the regions through which it passes. Add some noise to the
observation process so that some fraction of the time incorrect symbols are
reported in the list instead of the correct ones. The game is to reconstruct the
configuration of regions on the sheet from only such an ordered list(s) of
noisy symbols. Of course, the absolute scale, rotation and reflection of the
sheet can never be recovered, but learning the essential topology may be pos-
sible.6 Figure 8.14 illustrates this setup.
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Figure 8.14. (left) True map which generates symbol sequences by random movement
between connected cells. (centre) An example noisy output sequence with noisy symbols
circled. (right) Learned map after training on 3 sequences (with 15% noise probability) each
200 symbols long. Each cell actually contains an entire distribution over all observed symbols,
though in this case only the upper right cell has significant probability mass on more than one
symbol. Only the top three symbols of each cell’s histogram are show, with font size
proportional to the square root of probability (to make ink roughly proportional).

Without noise or repeated symbols, the game is easy (non-probabilistic
methods can solve it) but in their presence it is not. One way of mitigating the
noise problem is to do statistical averaging. For example, one could attempt to
use the average separation in time of each pair of symbols to define a dissimi-
larity between them. It then would be possible to use methods like multi-
dimensional scaling or a sort of Kohonen mapping though time7 to explicitly
construct a configuration of points obeying those distance relations. However,
such methods still cannot deal with many-to-one state to output mappings
(repeated numbers in the sheet) because by their nature they assign a unique
spatial location to each symbol.

Playing this game is analogous to doing unsupervised learning on struc-
tured sequences. (The game can also be played with continuous outputs,
although often high–dimensional data can be effectively clustered around a
manageable number of prototypes, thus a vector timeseries can be converted
into a sequence of symbols.) Constrained HMMs incorporate latent variables
with topology yet retain powerful nonlinear output mappings and can deal
with the difficulties of noise and many–to–one mappings mentioned above, so
they can “win” our game (see fig. 8.1). The key insight is that the game gener-
ates sequences exactly according to a hidden Markov process whose
transition matrix allows only transitions between neighbouring cells and
whose output distributions have most of their probability on a single symbol
with a small amount on all other symbols to account for noise.
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4.3 Model definition: state topologies from cell packings

Defining a constrained HMM involves identifying each state of the under-
lying (hidden) Markov chain with a spatial cell in a fictitious topology space.
This requires selecting a dimensionality d for the topology space and choosing
a packing (such as hexagonal or cubic) which fills the space. The number of
cells in the packing is equal to the number of states M in the original Markov
model. Cells are taken to be all of equal size and (since the scale of the topol-
ogy space is completely arbitrary) of unit volume. Thus, the packing covers a
volume M in topology space with a side length l of roughly The
dimensionality and packing together define a vector–valued function x(m),m=
1,...,M which gives the location of cell m in the packing. (For example, a cubic
packing of d dimensional space defines x(m+l) to be

(here a mod b denotes the remainder after
dividing a by b). State m in the Markov model is assigned to cell m in the
packing, thus giving it a location x(m) in the topology space. Finally, we must
choose a neighbourhood rule in the topology space which defines the neigh-
bours of cell m, for example, all “connected” cells, all face neighbours, or all
those within a certain radius. (For cubic packings, there are connected
neighbours and 2d face neighbours in a d dimensional topology space.) The
neighbourhood rule also defines the boundary conditions of the space – e.g.
periodic boundary conditions would make cells on opposite extreme faces of
the space neighbours with each other.

Figure 8.15. (left) Physical depiction of the topology space for a constrained HMM with
d=3,l=4 and M=64 showing an example state trajectory. (right) Corresponding transition matrix
structure for the 64-state HMM computed using face–centred cubic packing. The gaps in the
inner bands are due to edge effects.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 123

The transition matrix of the HMM is now preprogrammed to only allow
transitions between neighbours. All other transition probabilities are set to
zero, making the transition matrix very sparse. (We set all permitted transi-
tions to be equally likely.) Now, all valid state sequences in the underlying
Markov model represent connected (“city block”) paths through the topology
space. Figure 8.15 illustrates this for a three-dimensional model.

4.4 State inference and learning

The constrained HMM has exactly the same inference procedures as a reg-
ular HMM: the forward–backward algorithm for computing state occupation
probabilities and the Viterbi decoder for finding the single best state
sequence. Once these discrete state inferences have been performed, they can
be transformed using the state position function x(m) to yield probability dis-
tributions over the topology space (in the case of forward–backward) or paths
through the topology space (in the case of Viterbi decoding). This transforma-
tion makes the outputs of state decodings in constrained HMMs comparable
to the outputs of inference procedures for continuous state dynamical systems
such as Kalman smoothing.

The learning procedure for constrained HMMs is also almost identical to
that for HMMs. In particular, the EM algorithm (Baum-Welch) is used to
update model parameters. The crucial difference is that the transition proba-
bilities which are precomputed by the topology and packing are never updated
during learning. In fact, having a preprogrammed and fixed transition matrix
makes learning much easier in some cases. Not only do the transition proba-
bilities not have to be learned, but their structure constrains the hidden state
sequences in such a way as to make the learning of the output parameters
much more efficient when the underlying data really does come from a spa-
tially structured generative model. Notice that in this case, each part of state
space had only a single output (except for noise) so the final learned output
distributions became essentially minimum entropy. But constrained HMMs
can in principle model stochastic or multimodal output processes since each
state stores an entire private distribution over outputs.

4.5 Recovery of mouth movements from speech audio

We have applied the constrained HMM approach described above to the
problem of recovering mouth movements from the acoustic waveform in
human speech. Data containing simultaneous audio and articulator movement
information was obtained from the University of Wisconsin X-ray microbeam
database (Westbury, 1994). Eight separate points (four on the tongue, one on
each lip and two on the jaw) located in the midsaggital plane of the speaker’s
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Figure 8.16. Midsaggital locations of tracking beads in the University of Wisconsin X-ray
microbeam articulatory dataset.

head were tracked while subjects read various words, sentences, paragraphs
and lists of numbers. The x and y coordinates (to within about ±1 mm) of each
point were sampled at 146Hz by an X-ray system which located gold beads
attached to the feature points on the mouth, producing a 16-dimensional vec-
tor every 6.9ms. The audio was sampled at 22kHz with roughly 14 bits of
amplitude resolution but in the presence of machine noise.

How do these data relate to the general task introduced above? These data
are well suited to the constrained HMM architecture. They come from a sys-
tem whose state variables are known, because of physical constraints, to move
in connected paths in a low degree-of-freedom space. In other words the (nor-
mally hidden) articulators (movable structures of the mouth), whose positions
represent the underlying state of the speech production system,8 move slowly
and smoothly. The observed speech signal – the system’s output – can be char-
acterized by a sequence of short–time spectral feature vectors, often known as
a spectrogram. In the experiments reported here, we have characterized the
audio signal using 12 line spectral frequencies (LSFs) measured every 6.9ms
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(to coincide with the articulatory sampling rate) over a 25ms window. These
LSF vectors characterize only the spectral shape of the speech waveform over
a short time but not its energy. Average energy (also over a 25ms window
every 6.9ms) was measured as a separate one dimensional signal. Unlike the
movements of the articulators, the audio spectrum/energy can exhibit quite
abrupt changes, indicating that the mapping between articulator positions and
spectral shape is not smooth. (Compare the sampling rate of 22kHz for the
acoustic signal with 146Hz for the articulators.) Furthermore, the mapping is
many to one: different articulator configurations can produce very similar
spectra (see below).

The unsupervised learning task, then, is to explain the complicated
sequences of observed spectral features (LSFs) and energies as the outputs of
a system with a low-dimensional state vector that changes slowly and
smoothly. In other words, can we learn the parameters9 of a constrained
HMM such that connected paths through the topology space (state space) gen-
erate the acoustic training data with high likelihood? Once this unsupervised
learning task has been performed, we can (as shown below) relate the learned
trajectories in the topology space to the true (measured) articulator
movements.

While many models of the speech production process predict the many-to-
one and non-smooth properties of the articulatory to acoustic mapping, it is
useful to confirm these features by looking at real data. Figure 8.17 shows the
experimentally observed distribution of articulator configurations used to pro-
duce similar sounds. It was computed as follows. All the acoustic and
articulatory data for a single speaker are collected together. Starting with
some sample called the key sample, we find the 1000 samples “nearest” to this
key by two measures: articulatory distance, defined using the Mahalanobis
norm between two position vectors under the global covariance of all posi-
tions for the appropriate speaker, and spectral shape distance, again defined
using the Mahalanobis norm but now between two line spectral frequency
vectors using the global LSF covariance of the speaker’s audio data. In other
words, I find the 1000 samples that “look most like” the key sample in mouth
shape and that “sound most like” the key sample in spectral shape. we then
plot the tongue bead positions of the key sample (as a thick cross), and the
1000 nearest samples by mouth shape (as a thick ellipse) and spectral shape
(as dots). The points of primary interest are the dots, they show the distribu-
tion of tongue positions used to generate very similar sounds. (The thick
ellipses are shown only as a control to ensure that many nearby points to the
key sample do exist in the dataset.) Spread or multimodality in the dots indi-
cates that many different articulatory configurations are used to generate the
same sound.
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Figure 8.17. Inverse mapping from acoustics to articulation is ill–posed in real speech produc-
tion data. Each group of four articulator–space plots shows the 1000 samples in the entire
dataset which are “nearest” to one key sample (thick cross). The dots are the 1000 nearest sam-
ples using an acoustic measure based on line spectral frequencies. Spread or multimodality in
the dots indicates that many different articulatory configurations are used to generate very sim-
ilar sounds. Only the positions of the four tongue beads have been plotted. Four examples (with
different key samples) are shown, one each group of four panels. The thick ellipses (shown as a
control) are the two–standard deviation contour of the 1000 nearest samples using an articula-
tory position distance metric.

Why not do direct supervised learning from short–time spectral features
(LSFs) to the articulator positions? The ill–posed nature of the inverse prob-
lem as shown in figure 8.17 makes this impossible. To illustrate this
difficulty, we have attempted to recover the articulator positions from the
acoustic feature vectors using Kalman smoothing on a LDS. In this case, since
we have access to both the hidden states (articulator positions) and the system
outputs (LSFs) we can compute the optimal parameters of the model directly.
(In particular, the state transition matrix is obtained by regression from articu-
lator positions and velocities at time t onto positions at time t+1, the output
matrix by regression from articulator positions and velocities onto LSF vec-
tors, and the noise covariances from the residuals of these regressions.) Figure
8.18b shows the results of such smoothing, the recovery is quite poor, even
when the test utterance is included in the training set used to estimate model
parameters.
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Figure 8.18. (A) Recovered articulator movements using state inference on a constrained
HMM. A four-dimensional model with 4096 states (d=3,l=6,M=216) was trained on data (all
beads) from a single speaker but not including the test utterance shown. Dots show the actual
measured articulator movements for a single bead coordinate versus time, the thin lines are esti-
mated movements from the corresponding acoustics. (B) Unsuccessful recovery of articulator
movements using Kalman smoothing on a global LDS model. All the (speaker–dependent)
parameters of the underlying linear dynamical system are known, they have been set to their
optimal values using the true movement information from the training data. Furthermore, for
this example, the test utterance shown was included in the training data used to estimate model
parameters. (C) All 16 bead coordinates, all vertical axes are the same scale. Bead names are
shown on the left. Horizontal movements are plotted in the left–hand column and vertical
movements in the right–hand column. The separation between the two horizontal lines near the
centre of the right panel indicates the machine measurement error.

Constrained HMMs can be applied to this recovery problem, as previously
reported (Roweis and Alwan, 1997). (Earlier results used a small subset of the
same database that was not continuous speech and did not provide the hard
experimental verification (fig. 8.17) of the many-to-one problem.)

The basic idea is to train (unsupervised) on sequences of acoustic–spectral
features and then map the topology space state trajectories onto the measured
articulatory movements. Figure 8.18 shows movement recovery using state
inference in a four-dimensional model with 4096 states (d=4,l=8,M=4096)
trained on data (all beads) from a single speaker. (Naive unsupervised learn-
ing runs into severe local minima problems. To avoid these, in the simulations
shown above, models were trained by slowly annealing two learning
parameters10: a term was used in place of the zeros in the sparse transition
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matrix, and was used in place of during inference of
state occupation probabilities. Inverse temperature was raised from 0 to 1.)
To infer a continuous state trajectory from an utterance after learning, we first
do Viterbi decoding on the acoustics to generate a discrete state sequence
and then interpolate smoothly between the positions of each state.

After unsupervised learning, a single linear fit is performed between these
continuous state trajectories and actual articulator movements on the training
data. (The model cannot discover the units system or axes used to represent
the articulatory data.) To recover articulator movements from a previously
unseen test utterance, we infer a continuous state trajectory as above and then
apply the single linear mapping (learned only once from the training data).

4.6 Constrained HMMs for Articulatory Data:
Conclusions, extensions and related work

By enforcing a simple constraint on the transition parameters of a standard
HMM, a link can be forged between discrete state dynamics and the motion of
a real–valued state vector in a continuous space. For complex time–series
generated by systems whose underlying latent variables do in fact change
slowly and smoothly, such constrained HMMs provide a powerful unsuper-
vised learning paradigm. They can model state to output mappings that are
highly nonlinear, many to one and not smooth. Furthermore, they rely only on
well understood learning and inference procedures that come with conver-
gence guarantees.

Results on synthetic and real data show that these models can successfully
capture the low-dimensional structure present in complex vector time–series.
In particular, we have shown that a speaker dependent constrained HMM can
accurately recover articulator movements from continuous speech to within
the measurement error of the data. This acoustic to articulatory inversion
problem has a long history in speech processing (see e.g. Schroeter and Son-
dhi, 1994, and references therein). Many previous approaches have attempted
to exploit the smoothness of articulatory movements for inversion or model-
ing: Hogden et.al (e.g. Nix and Hogden, 1999) provided early inspiration for
these ideas, but do not address the many-to-one problem, Simon Blackburn
(Blackburn and Young, 1996) has investigated a forward mapping from artic-
ulation to acoustics but does not explicitly attempt inversion, early work at
Waterloo (Ramsay and Deng, 1994) suggested similar constraints for improv-
ing speech recognition systems but did look at real articulatory data, more
recent work at Rutgers (Chennoukh et al., 1997) developed a very similar sys-
tem much further with good success. Perpiñán (Carreira-Perpiñán, 2000),
considers a related problem in sequence learning using EPG speech data as an
example.
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While in this section we have described only “diffusion” type dynamics
(transitions to all neighbours are equally likely) it is also possible to consider
directed flows which give certain neighbours of a state lower (or zero) proba-
bility. The left-to-right HMMs mentioned earlier are an example of this for
one-dimensional topologies. For higher dimensions, flows can be derived
from discretization of matrix (linear) dynamics or from other physical/struc-
tural constraints. It is also possible to have many connected local ow regimes
(either diffusive or directed) rather than one global regime as discussed above,
this gives rise to mixtures of constrained HMMs which have block–structured
rather than banded transition matrices. Smyth (Smyth, 1997) has considered
such models in the case of one-dimensional topologies and directed flows, we
have applied these to learning character sequences from English text. Another
application I have investigated is map learning from multiple sensor readings.
An explorer (robot) navigates in an unknown environment and records at each
time many local measurements such as altitude, pressure, temperature, humid-
ity, etc. We wish to reconstruct from only these sequences of readings the
topographic maps (in each sensor variable) of the area as well as the trajectory
of the explorer. A final application is tracking (inferring movements) of artic-
ulated bodies using video measurements of feature positions.

5 SUMMARY

In this chapter, we have explored the use of inference in probabilistic gen-
erative models as a powerful signal processing tool for speech and audio. The
basic paradigm explored was to design a simple model for the data we
observe in which the key quantities that we would eventually like to compute
appear as hidden (latent) variables. By executing probabilistic inference in
such models, we automatically estimating the hidden quantities and thus per-
form our desired computation. In a sense, the rules of probability derive for
us, automatically, the optimal signal processing algorithm for our desired out-
puts given our inputs under the model assumptions. Crucially, even though
the generative model may be quite simple and may not capture all of the vari-
ability present in the data, the results of inference can still be extremely
informative.

We gave several examples showing how inference in very simple genera-
tive models can be used to perform surprisingly complex speech processing
tasks including denoising, source separation, pitch tracking, timescale modifi-
cation and estimation of articulatory movements from audio.
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Notes

1.

2.

3.

An equivalent operation can be performed in the frequency domain by making a conven-
tional spectrogram of the original signal y(t) and modulating the magnitude of each
short time DFT while preserving its phase:
where and are the windows (blocks) of the recovered and original signals, is
the masking signal for subband i in window w, and F[•] is the DFT.

This can be demonstrated artificially by taking several isolated sources or noises and mixing
them in a controlled way. Since the original components are known, an “optimal” set
of masking signals can be computed. For example, we might set equal to the ratio of
energy from one source in band i around times to the sum of energies from all
sources in the same band at that time (as recommended by the Wiener filter) or to a
binary version which thresholds this ratio. Constructing masks in this way is, of
course, not possible when we are confronted with an unknown mixture or corrupted
signal, but it can be useful for generating labeled training data for use by a statistical
learning system, as discussed below.

Many variations on this basic theme are possible: if the final observation is obtained by sto-
chastically selecting one of the proposed output vectors, then this becomes a “mix-
ture of mixtures” which reduces to a large at mixture model or quantizer with a
number of codebook entries equal to the product of the codebook sizes of the constit-
uent quantizers. In Zemel’s Cooperative Vector Quantization (CVQ) model (Hinton
and Zemel, 1994), the proposals are combined linearly (either with the same coeffi-
cients across all dimensions or with different coefficients on each dimension) to pro-
duce the final output for each case. Zemel has also proposed a different model, called
Multiple–Cause Vector Quantization (MCVQ) (Ross and Zemel, 2003), in MCVQ
each component (dimension) of the observation vector also stochastically selects
which vector quantizer is to provide its value. Each observation is then a noisy com-
posite of the proposed values from each vector quantizer. This is like a mixture of
mixtures but where each dimension makes a separate choice about which mixture to
select. MAXVQ has similarities to each of MCVQ and CVQ. Unlike MCVQ, in
MAXVQ the composite is not made by having each output dimension select a quan-
tizer. Similar to CVQ there is a single fixed function which is applied to the proposed
vectors from each quantizer to generate the final output. However, in CVQ this func-
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tion implements a weighted sum, while in MAXVQ it implements an elementwise
maximum.)

4. Much of the work described in this section was performed in collaboration with Kannan
Achan at the University of Toronto.

5. A standard trick in traditional speech applications of HMMs is to use “left-to-right” transi-
tion matrices which are a special case of the type of constraints investigated in this
section. However, left-to-right (Bakis) HMMs force state trajectories that are inher-
ently one-dimensional and uni-directional whereas here we also consider higher
dimensional topology and free omni-directional motion.

6. The observed symbol sequence must be “informative enough” to reveal the map structure
(this can be quantified using the idea of persistent excitation from control theory).

7. Consider a network of units which compete to explain input data points. Each unit has a posi-
tion in the output space as well as a position in a lower dimensional topology space.
The winning unit has its position in output space updated towards the data point, but
also the recent (in time) winners have their positions in topology space updated
towards the topology space location of the current winner. Such a rule works well,
and yields topological maps in which nearby units code for data that typically occur
close together in time. However it cannot learn many-to-one maps in which more
than one unit at different topology locations have the same (or very similar) outputs.

8. Articulator positions do not provide complete state information. For example, the excitation
signal (voiced or unvoiced) is not captured by the bead locations. They do, however,
provide much important information, other state information is easily accessible
directly from acoustics.

9.Model structure (dimensionality and number of states) is set using cross validation.

10.An easier way (which we have used previously) to find good minima is to initialize the mod-
els using the articulatory data themselves. This does not provide as impressive “struc-
ture discovery” as annealing but still yields a system capable of inverting acoustics
into articulatory movements on previously unseen test data. First, a constrained
HMM is trained on just the articulatory movements, this works easily because of the
natural geometric (physical) constraints. Next, we take the distribution of acoustic
features (LSFs) over all times (in the training data) when Viterbi decoding places the
model in a particular state and use those LSF distributions to initialize an equivalent
acoustic constrained HMM. This new model is then retrained until convergence
using Baum-Welch.
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Signal Separation Motivated by Human Auditory
Perception: Applications to Automatic Speech
Recognition

Richard M. Stern
Carnegie Mellon University, Pittsburgh, PA USA
rms@cs.cmu.edu

1 INTRODUCTION

Signal separation remains one of the most challenging and compelling
problems in auditory perception, and a good solution for many core signal
separation problems is necessary to improve the accuracy of contemporary
automatic speech recognition systems in many practical environments.

As automatic speech recognition technology is transferred from the labo-
ratory environment into practical applications, the need to ensure robust
recognition in a wide variety of acoustical environments has become increas-
ingly apparent. While algorithms designed to cope with the effects of
unknown additive noise and unknown linear filtering are plentiful in number,
today’s applications also demand good performance in many more difficult
environments. Some of the most challenging environments for speech recog-
nition systems today include:

Speech in high noise, with signal-to-noise ratios (SNRs) approaching
or below 0 dB

Speech in the presence of background speech

Speech in the presence of background music

Conventional signal processing provides only limited benefit for these
problems, even today.

In this chapter I will suggest ways in which Al Bregman’s huge corpus of
creative research in auditory streaming and auditory scene analysis (as sum-
marized in Bregman, 1990) can be exploited to improve the accuracy of
automatic speech recognition systems. I will begin by briefly summarizing
and commenting on some aspects of current state-of-the art speech recogni-
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tion. I will then discuss ways in which cues that may be useful in separating
speech signals for improved recognition accuracy can be extracted in ways
that are based on some of the principles of auditory scene analysis.

2 ROBUST AUTOMATIC SPEECH RECOGNITION

The general topic of robust speech recognition has received a great deal of
attention over the past two decades. There are many sources of acoustical dis-
tortion that can degrade the accuracy of speech recognition systems. For many
speech recognition applications the two most important sources of environ-
mental degradation are unknown additive noise (from sources such as
machinery, ambient air flow, and speech babble from background talkers) and
unknown linear filtering (from room acoustics, or from spectral shaping by
microphones or the vocal tracts of individual speakers). Other sources of deg-
radation include transient interference to the speech (such as doors slamming
or telephones ringing), nonlinear distortion (arising from sources such as
speech coding), and “co-channel” interference by individual competing talk-
ers. Similarly, there are many approaches to robust recognition, including the
use of statistical estimation of and compensation for the effects of degrada-
tion, the use of physiologically–motivated signal processing techniques that
mimic processing by the human auditory system, and the use of arrays of
microphones. These approaches and others are reviewed in Juang (1991);
Singh et al (2002a; 2002b), and Stern et al. (1996; 1997), among many other
sources. Most research in robust recognition has been directed toward com-
pensation for the effects of additive noise and linear filtering.

2.1 Statistical approaches to robust recognition

Figure 9.1 describes the implicit model for environmental degradation
introduced by Acero and Stern (1990) and now used in many signal process-
ing algorithms developed at CMU and elsewhere. It is assume that the “clean”
speech signal x[m] is first passed through a linear filter with unit sample
response h[m] whose output is then corrupted by uncorrelated additive noise
n[m] to produce the degraded speech signal z[m]. Under these circum-
stance, the goal of compensation is, in effect, to estimate the parameters
characterizing the unknown additive noise and the unknown linear filter, and
to apply the appropriate inverse operation. The popular approaches of spectral
subtraction (as introduced by Boll, 1979) and homomorphic deconvolution
(Stockham et al., 1975) are special cases of this model, in which either addi-
tive noise or linear filtering effects are considered in isolation. When the
compensation parameters are estimated jointly, the problem becomes a non-
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Figure 9.1. A model of environmental distortion. The effects of unknown linear filtering
are modeled by the filter with unit impulse response h[m] and the effects of additive
unknown noise are modeled by the random process n[m].

Figure 9.2. Comparison of recognition accuracies on the DARPA 5000-word Wall Street
Journal task using CMN, CDCN, VTS, and complete retraining.

linear one, and can be solved using algorithms such as codeword–dependent
cepstral normalization (CDCN, Acero and Stern, 1990) and vector–Taylor
series compensation (VTS, Moreno et al., 1996).

Figure 9.2 shows recognition accuracies obtained for a standard dictation
task obtained using the CMU SPHINX-II speech recognition system for
speech in broadband noise plotted as a function of signal-to-noise ratio (SNR)
(Moreno et al., 1996). The curve on the right represents the accuracy obtained
using features derived from Mel frequency cepstral coefficients (MFCC)
using cepstral mean normalization (CMN), which represents baseline perfor-
mance for this particular system on this task with no particular compensation
scheme used. The curve on the far left represents system performance
obtained when the system is completely retrained for a particular noisy envi-
ronment, which represents in a sense the upper bound in performance
imposed by the particular noisy environment, given the type of signal process-
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ing and speech recognition algorithms used. The intermediate curves
represent the recognition accuracy obtained using the CDCN and VTS algo-
rithms, which were introduced in 1990 and 1997, respectively. The use of
VTS provides an improvement of approximately 7 dB in SNR compared to
the baseline processing. While that may not appear to be very much improve-
ment, it can be the difference between virtually chance recognition
performance and best possible performance at intermediate SNRs in the range
of 5 to 10 dB, which is in important operating region.

Nevertheless, statistical parameter estimation compensation methods are
not without their shortcomings. Figure 9.3 compares the improvement in word
error rate (WER) obtained using CDCN for a similar speech recognition to
that of Figure 9.2. (Results with VTS would be similar). It is expected that the
improvement provided by CDCN and similar algorithms would be small at
very high SNRs (because the interfering signal introduces very little degrada-
tion at those SNRs) and at very low SNRs (because the noise produces almost
complete degradation no matter what form of compensation is attempted.
More interesting is the performance of CDCN compensation at intermediate
SNRs, where the WER is decreased by almost 50 percent with background
noise, but never by more than 10 percent in the presence of background music
(Raj et al. 1997). The failure of CDCN and similar compensation algorithms
to provide meaningful compensation in the presence of background music can
be attributed to several factors including the nonstationarity of background
music as well as its speechlike nature. A wide variety of classical noise and
channel compensation algorithms will exhibit similar deficiencies.

These difficulties with classical statistically–based approaches to robust
speech recognition suggest that viable solutions to the problems of speech

Figure 9.3. Percentage improvement provided by the CDCN algorithm for speech in the
presence of white noise (circles) and background music (squares).
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recognition at low SNRs and in the presence of transient and other types of
time–varying interference must be based on the identification of the speech
signal to be recognized, along with its explicit separation from the interfering
signal or signals. This can in principle be accomplished by a number of tech-
niques including any of several “missing–feature” approaches to noise
compensation, as well as the techniques that are collectively referred to as
“computational auditory scene analysis” (CASA). Researchers in CASA
attempt to develop computational techniques that mimic the processes that are
believed to mediate the identification and separation by humans of the sepa-
rate components of a complex acoustical sound field. These approaches are
discussed in the following two sections.

2.2 “Missing–feature” approaches to robust recognition

One potentially useful approach to speech recognition in the presence of
the type of transient interference that is not handled well by algorithms like
CDCN is the use of “missing–feature” techniques. Briefly, in missing–feature
approaches, one attempts to determine which cells of a spectrogram–like
time–frequency display of speech information are unreliable (or “missing”)
because of degradation due to noise or some other type of interference. The
cells that are determined to be “missing” are either ignored in subsequent pro-
cessing and statistical analysis, or they are “filled in” by optimal estimation of
their putative values. While missing–feature approaches were initially moti-
vated by similar techniques developed in image classification to deal with the
problem of partially–occluded objects and have been developed by a number
of research groups, it is fair to say that Martin Cooke and his colleagues at the
University of Sheffield have produced the most comprehensive and widely–
adopted approaches to the problem (e.g. Cooke et al., 2001; Cooke, 2004;
Brown and Palomäki, 2004).

As an example, the upper panel of Figure 9.4 shows a spectrogram of an
utterance recorded in quiet. The central panel of that figure shows the same
utterance after it is mixed with white noise at an SNR of 15 dB. It can be seen
that the major effect of the noise is to fill in the “valleys” of the spectrogram.
The lower panel of Figure 9.4 shows the same spectrogram, but the pixels that
have an effective SNR of less than zero dB are indicated by dark blue solid
pixels.

Figure 9.5 compares the speech recognition accuracy that is obtained
using two types of missing–feature reconstruction techniques with baseline
processing and simple spectral subtraction in the presence of artificially–
added white Gaussian noise (upper panel) and background music derived
from the DARPA Hub 4 task (lower panel), as a function of SNR (Raj et al.,
2004). The two missing–feature techniques that are used in these experiments,
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Figure 9.4. Spectrograms of speech recorded in quiet (upper panel) and subjected to artifi-
cially–added white noise with an SNR of 15 dB (central panel). Pixels that exhibit an SNR of
less than zero dB are deemed missing and are depicted as solid dark regions.



Chapter 9: Signal Separation and ASR 141

Figure 9.5. Recognition accuracy using cluster-based missing feature reconstruction
(squares), covariance-based missing feature reconstruction (diamonds), simple spectral sub-
traction (triangles), and cepstral mean normalization only (circles) techniques for speech in
the presence of white noise (upper panel) and music (lower panel) when perfect a priori infor-
mation is available concerning which incoming features are “missing.”

cluster–based reconstruction and covariance–based reconstruction, recon-
struct the incoming feature vectors rather than modify the internal
representation used by the classifier, as is more common. Recognition accu-
racy using missing–feature techniques can be quite good, even at low SNRs,
while compensation using spectral subtraction does not improve performance
at all in the presence of music. (Algorithms like CDCN and VTS would per-
form similarly to spectral subtraction for stimuli such as these.) Nevertheless,
these results were obtained assuming perfect (or “oracle”) a priori knowledge
of which pixels in the spectrogram-like representation are “missing” and
which pixels are “present” (or more accurately which pixels are damaged and
which are undamaged by the effects of noise). This type of information is nor-
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Figure 9.6. Comparison of recognition accuracy using cluster-based missing feature techniques
assuming perfect “oracle” a priori knowledge of which features are missing (squares) and using
blind identification of missing features (diamonds), using spectral subtraction as the basis for
missing-feature decisions (triangles), and baseline processing (circles) for speech in the pres-
ence of while noise (upper panel) and music (lower panel).

mally not available in the recognition process and the blind determination of
which pixels are or are not missing is in general a very difficult task.

Figure 9.6 presents a more realistic picture of the current state-of-the-art in
missing–feature recognition in that it compares the recognition accuracy
obtained with the missing features identified blindly using Bayesian tech-
niques (Seltzer et al., 2004) with oracle missing–feature identification, along
with results obtained using spectral subtraction to obtain missing–feature
decisions, and baseline processing. The most effective features used by the
Bayesian classifier track the fundamental frequency of voiced speech seg-
ments and estimate the fraction of total energy in a frame that is observed at
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frequencies that are harmonic multiples of the fundamental. The performance
obtained with blind estimation of missing features approaches that observed
with perfect oracle missing–feature identification in the case of background
noise. Recognition accuracy obtained using cluster–based missing–feature
compensation is not quite as good in the presence of background music, but it
is still quite a bit better than the accuracy obtained with statistical estimation
techniques such as spectral subtraction, which do not provide any meaningful
benefit at all.

2.3 Summary

While conventional techniques that compensate for the effects of additive
noise and linear filtering of speech sounds can provide substantial improve-
ment in recognition accuracy when the cause of the acoustical degradation is
quasi-stationary, little improvement is observed at SNRs below approxi-
mately +5 dB. The use of techniques based on missing–feature analysis can
provide substantial benefit at lower SNRs, but they are critically dependent on
the ability to identify correctly which pixels actually are missing. The recog-
nition of speech at lower SNRs, and especially speech in the presence of
transient sources of interference including background speech and back-
ground music, remains a problem that is essentially unsolved at present.

3 APPLICATIONS OF AUDITORY SCENE ANALY-
SIS TO AUTOMATIC SPEECH RECOGNITION

Over a period of several decades, Al Bregman, his colleagues, and
researchers in other groups have compiled a monumental corpus of experi-
mental results and schematic modeling that attempt to identify ways in which
the human auditory system segregates and identifies components of a com-
plex sound field (e.g. Bregman, 1990; Darwin and Carlyon, 1995). While this
work had originally been called “auditory streaming” by Bregman, it is now
commonly known as “auditory scene analysis.” The computational simulation
and emulation of many of the processes identified by Bregman and his col-
leagues has become a popular topic of research by computer scientists and
engineers in recent years, and these efforts are collectively referred to as
“computational auditory scene analysis (CASA).”

Bregman et al. have identified many types of cues that can be used for
auditory scene analysis of speech signals, including (among several others)
fundamental frequency and harmonic relationships, spatial location cues, and
correlated frequency and amplitude changes. In this section I will discuss
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some attributes about these cues and how they can be applied to improve
automatic speech recognition accuracy.

3.1 Fundamental frequency and harmonic relationships

It has already been noted that pitch information can be extremely useful in
the Bayesian determination of which pixels are missing in missing–feature
analysis. In principle, the accurate identification and tracking of the funda-
mental frequency of voiced segments can be used to isolate the fundamental
frequency and its harmonics from the background. In assessing the potential
utility of pitch estimates as the basis for improved signal processing to
achieve robust speech recognition, some key questions are how well speech
can be separated from noise, how well speech signals can be separated from
one another, and the extent to which this separation can improve recognition
accuracy.

An informal assessment of some of these issues was made using samples
of speech in the CMU Arctic database, which includes a phonetically–bal-
anced corpus of read speech combined with electrolaryngograph (EGG)
recordings collected by Komenik and Black (2003) as a resource for speech
synthesis. It is quite easy to extract an accurate pitch track from the EGG
recordings.

In an informal pilot study, two utterances from the Arctic database, by one
male and one female speaker. The analysis and subsequent resynthesis of the
speech were explored using two methods. The first approach, called synchro-
nous heterodyne analysis (SHA), multiplies the incoming signal by a sine
wave and cosine wave at the instantaneous fundamental frequency, squares
the product, and sums the result over a limited time time. In the second
approach, called comb–filter analysis (CFA), the speech signal is passed
through a comb filter with the transfer function

This filter has a response with sharp peaks at integer multiples of the recip-
rocal of the parameter P, which represents the nominal period of the signal.
Varying the parameter P in accordance with the estimated fundamental fre-
quency, and using values of 0.8 to 0.9 for the parameter g, it is possible to
isolate the speech from background interference. Clearly neither SHA nor
CFA provides any benefit for unvoiced segments of speech sounds or for
whispered speech.

Speech in isolation was analyzed and resynthesized using the SHA and
CFA methods. For both male and female speakers informal listening suggests
that intelligibility is fair to good using the SHA method and good to excellent
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using the CFA method. Male and female speech sounds were also added
together at 0 dB SNR and attempted to separate them using SHA and CFA,
with the heterodyne frequency in SHA or the fundamental frequency in CFA
tuned to the target speaker. Using both SHA and CFA, the separated speech of
the male was fair to good in intelligibility, while the separated speech of the
female was poor to fair. It is believed that this asymmetry in performance is a
consequence of the differing spectral regions of male and female speech. Spe-
cifically, when the male is the target speaker, the higher fundamental
frequency of the interfering female causes her speech components to be
spaced farther apart in frequency, imposing a smaller amount of degradation
on the upper components of the target male. Conversely, when the female is
the target, the upper partials of the speech of the interfering male are relatively
dense, and they are more likely to interfere with the perceptually–important
lower harmonics of the speech of the target female.

While neither the SHA or CFA technique have yet been used in actual
speech recognition experiments, I regard them as promising, both for speech
at lower SNRs, and for speech in the presence of interfering speech and
music. Again, it must be stressed that the results described above were
obtained using perfect “oracle” knowledge of the fundamental frequency of
the target speaker. While fundamental frequency extraction continues to be
the object of a great deal of attention in recent years (e.g. de Cheveigné and
Baskind, 2003; de Cheveigné, 2004; Kawahara et al., 1999; Kawahara and
Irino, 2004), pitch tracking, and especially tracking the pitch of multiple
speech or music sources, remains a very difficult problem. As noted above,
these techniques are not useful for unvoiced speech segments.

3.2 Spatial location cues

Sound sources arriving from different azimuths produce interaural time
delays (ITDs) and interaural intensity differences (IIDs) as they arrive at the
two ears. It is well known that human listeners can use spatial information to
improve the intelligibility of speech in the presence of other speech or noise
interference (e.g. Zurek, 1993). The binaural hearing mechanism can focus
attention on a target speaker in a complex acoustical environment, or it can
focus on the direction of arrival of the direct sound field of a target speaker in
a reverberant environment. The mechanisms underlying these abilities are not
completely understood, and as Zurek (1993) has noted, some improvement is
to be expected simply by attending solely to the ear that is closer to the target
speech source.

Most models of binaural perception (e.g. Colburn, 1995; Colburn and
Durlach, 1978; Stern and Trahiotis, 1995, 1997) assume that peripheral audi-
tory processing includes bandpass filtering and nonlinear rectification of the
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Figure 9.7. Generic model of binaural processing proposed by Colburn and Durlach.. Three
of many sets of fiber pairs are depicted.

incoming sounds, followed by a cross–correlation analysis of the bandpass–
filtered and rectified signals, with subsequent analysis (at least for simple
stimuli) based on consideration of ITD and IID information as a function of
frequency. This processing is summarized by the block diagram of Figure 9.7.
Most models of binaural interaction assume that ITD information is extracted
using a coincidence–analysis mechanism first proposed by Jeffress (1948).
Figure 9.8 shows the putative representation of such interaural timing infor-
mation in response to bandpass noise presented with an ITD of–1.5 ms with a
center frequency of 500 Hz and bandwidths of 50 Hz (upper panel) and 800
Hz (lower panel). For both bandwidths the stimulus ITD can be inferred from
the ridges at –1.5 ms, although with greater ambiguity in the case of the nar-
rowband noise with only 50-Hz bandwidth (upper panel).

There is some disagreement concerning the extent to which ITD informa-
tion is used by humans as the basis of signal separation. While the results of
one influential study by Culling and Summerfield (1995) imply that simulta-
neously–presented unmodulated whispered vowels are not separated by their
ITDs, more recent studies have shown that these ITD can be a useful cue in
fostering identification of simultaneously–presented speech sounds when they
are presented with natural amplitude and frequency modulations (Stern et al.,
2004). In any case, even if the auditory system does not make efficient use of
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Figure 9.8. The putative response of an ensemble of Jeffress-Colburn coincidence–counting
units to low–frequency bandpass noise with a center frequency of 500 Hz and an ITD of –1.5
ms. Upper panel: response to bandpass noise with a bandwidth of 50 Hz. Lower panel: response
to bandpass noise with a bandwidth of 800 Hz.

interaural timing information for this task, these physical cues are still avail-
able for computational auditory processors. Many types of signal processing
approaches developed in the 1980s and 1990s such as spectral subtraction did
not improve human speech intelligibility when measured objectively, but they
still proved to be useful for improving the accuracy of automatic speech rec-
ognition systems. Our work in this area is motivated by the belief that we
should be inspired by but not limited by our knowledge of the human auditory
system.

The block diagram of one system constructed some time ago that used ITD
information to improve speech recognition accuracy is shown in Fig. 9.9 (Sul-
livan and Stern, 1993). The input signals from each of K channels are first
delayed in order to compensate for differences in the acoustical path length of
the desired speech signal to each microphone. (This is the same processing
performed by conventional delay-and-sum beamforming.) The signals from
each microphone are passed through a bank of bandpass filters with different
center frequencies, passed through nonlinear rectifiers, and the outputs of the
rectifiers at each frequency are correlated. (The correlator outputs correspond
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Figure 9.9. Block diagram of multi–microphone cross–correlation–based processing
system.

Figure 9.10. Estimates of frequency–warped spectra for the vowel segment /a/ for various
SNRs using (a) 2 input channels and zero delay, (b) 2 input channels and delay to
successive channels, and (c) 8 input channels and delay.

to outputs of the coincidence counters at the internal delays of the “ridges” in
Fig. 9.8 at –1.5 ms.) The result of this operation is a form of K-dimensional
cross–correlation, which reduces to a conventional cross–correlation opera-
tion for two inputs. The outputs of the multi-dimensional cross–correlation
operation are considered as if they were energy estimates short–time energy
estimates in each of the frequency channels, and they are subsequently con-
verted into 12 cepstral coefficients using the cosine transform. These cepstral
coefficients along with an additional coefficient representing the power of the
signal are used as features for speech recognition in the conventional fashion.
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Figure 9.10 demonstrates the validity of the such processing in the context
of an analysis of a sample of the digitized vowel segment /a/ corrupted by arti-
ficially–added white Gaussian noise at global SNRs of 0 to +21 dB. The
speech segment was presented to all microphone channels identically (to sim-
ulate a desired signal arriving on axis) and the noise was presented with
linearly increasing delays to the channels (to simulate an off–axis corrupting
signal impinging on a linear microphone array). The processing of such a sys-
tem was simulated using 2 and 8 microphone channels, and time delays for
the masking noise of 0 and to successive channels.

The curves of Fig. 9.10 describe the effect of SNR, the number of process-
ing channels, and the delay of the noise on the spectral profiles of a sample of
the vowel segment /a/. (The frequency representation for the vowel is warped
in frequency according to the nonlinear spacing of the auditory filters.) The
upper panel summarizes the results that are obtained using 2 channels with the
noise presented with zero delay from channel to channel (which would be the
case if the speech and noise signals arrive from the same direction). Note that
the shape of the vowel, which is clearly defined at high SNRs, becomes
almost indistinct at the lower SNRs. The center and lower panels show the
results of processing with 2 and 8 microphones, respectively, when the noise
is presented with a delay of from channel to channel (which corre-
sponds to a off–axis source location for typical microphone spacing). As the
number of channels increases from 2 to 8, the shape of the vowel segment in
Figure 9.10 becomes much more invariant to the amount of noise present. In
general, it was found in these experiments that the benefit to be expected from
increases sharply as the number of microphone channels is increased. It was
also observed (unsurprisingly) that the degree of improvement increases as
the simulated directional disparity between the desired speech signal and the
masker increases. It was concluded from these pilot experiments that the
cross–correlation method described can provide very good robustness to off–
axis additive noise, and in practice, this approach did provide a moderate ben-
efit over the recognition accuracy obtained using conventional delay-and-sum
processing (Sullivan and Stern, 1993).

These studies, which were conducted in the early 1990s, were not contin-
ued because of the lack of available computational resources at that time. It is
believed that further improvements are likely to be obtained once greater
attention is paid to the nature of the bandpass filtering, within–channel nonlin-
earities, and correlation operations. Correlation–based approaches such as
these can be applied to unvoiced as well as to voiced segments of speech, and
other research groups as well as ours are experiencing success in the applica-
tion of information about interaural differences to improved speech
recognition accuracy (e.g. Palomäki et al., 2004, Wang, 2004).
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A final item of note with regard to spatial processing is that high levels of
reverberation are extremely detrimental to recognition accuracy. Frame–
based compensation strategies such as those discussed in Sec. 2.1 fail because
the effects of reverberation are generally spread over multiple analysis
frames. In addition, traditional adaptive filtering methods, which have also
been considered for this purpose, depend on the statistical independence of
target and masker. Since in reverberant environments, the “noise” consists of
reflected and attenuated copies of the target speech signals, noise–canceling
adaptive filter strategies (such as those that use the LMS algorithm) are gener-
ally not effective. Sub-band processing in a similar fashion has been
somewhat effective in reverberation, but it has not yet been applied to a wide
range of problems. It is expected that techniques based on auditory perception
and physiology, missing–feature recognition, and CASA techniques should
be more effective in characterizing and ultimately ameliorating the effects of
reverberation.

3.3 Correlated frequency and amplitude changes

Although cues based on fundamental frequency and sound source location
are potentially extremely valuable in separating signals for automatic speech
recognition, pitch cues are ineffective for unvoiced segments and location
multichannel recordings with location information are not always available.
Even with just a single channel, unvoiced speech segments, and/or imperfect
pitch estimates, we expect to be able to separate multiple sound sources using
by extracting and clustering sounds according to small (“micro”) modulations
in frequency and amplitude. The use of such physical cues for sound separa-
tion and auditory scene analysis has been supported by many
psychoacoustical studies in recent years (e.g. Bregman, 1990; Darwin and
Carlyon, 1995).

In an influential demonstration, John Chowning showed in the early 1980s
that the perceptual salience of correlated frequency modulation is a highly
salient factor in segregating and fusing components of a complex signal or
signals. As described in detail in Bregman’s (1990) treatise, an initial com-
plex tone is presented that combines three sine waves at (for example) 300,
400, and 500 Hz. Taken as individual sine waves, these three frequencies
form a major triad in the second inversion, but the components are more likely
to be heard as the third through fifth harmonics of a fused complex tone with
fundamental frequency 100 Hz. Next, the three sine waves are replaced by
three sets of 10 harmonics at integer multiples of 300, 400, and 500 Hz, with
spectral envelopes that are derived from three different vowel sounds. Again
this signal is perceived as a complex tone with fundamental frequency 100
Hz, but with a sharper timbre because of the presence of 27 additional upper–
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frequency partials. Finally, separate frequency modulations at approximately
4.5, 5, and 5.5 Hz, are added to the 10-harmonic complex tones with funda-
mental frquencies 300, 400, and 500 Hz, respectively. Once the frequency
modulation is applied, the harmonics associated with each fundamental fre-
quency segregate from one another and become easily perceived as three
separate complex tones with fundamental frequencies of 300, 400, and 500
Hz. In informal listening we have noted that the segregation according to fre-
quency modulation is dramatic and easy to perceive using the signal
parameters as described in Bregman (1990). Signals that are constructed by
amplitude modulating the partials in a similar fashion do not produce nearly
as dramatic a perceptual segregation according to modulation frequency as is
observed for frequency modulation.

My research group is currently developing ways to develop through com-
putational means a form of signal separation based on the identification of
common locations in a time–frequency display like a spectrogram that exhibit
covarying amplitude and frequency modulation. This is a difficult task
because of the need to achieve sharp frequency resolution while allowing for
temporal fluctuations, but the ability of the human auditory system to accom-
plish these tasks remains a powerful existence proof and motivation to move
this work forward.

4 SUMMARY

It is believed that computational auditory approaches are potentially
extremely useful in ameliorating some of the most difficult speech recogni-
tion problems, specifically the recognition of speech presented at low SNRs,
speech masked by other speech, speech masked by music, and speech in
highly reverberant environments. The solution to these problems using CASA
techniques is likely to depend on the ability to develop several key elements
of signal processing, including the reliable detection of fundamental fre-
quency for isolated speech and for multiple simultaneously–presented speech
sounds, the reliable detection of modulations of amplitude and frequency in
very narrowband channels, and the development of across–frequency correla-
tion approaches that can identify frequency bands with coherent micro–
activity as they evolve over time. I am extremely optimistic that effective
solutions for these problems are within reach in the near future.



152 Speech Separation

ACKNOWLEDGMENTS

The author is extremely grateful to Dan Ellis, DeLiang Wang, and espe-
cially Pierre Divenyi for organizing the NSF Workshop on Speech Separation
and to the National Science Foundation’s Human Language and Communica-
tion Program and the Mitsubishi Electric Research Labs for sponsoring it. The
work described was sponsored by the Space and Naval Warfare Systems Cen-
ter, San Diego, under Grant No. N66001-99-1-8905. The content of the
information in this publication does not necessarily reflect the position or the
policy of the US Government, and no official endorsement should be inferred.

References

Acero, A., and Stern, R. M., 1990, “Environmental robustness in automatic speech recogni-
tion,” Proc. ICASSP, Albuquerque, New Mexico.

Boll, S. F., 1979, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE
Trans. Acoustics, Speech and Signal Processing, 27: 113–120.

Bregman, A. S., 1990, Auditory Scene Analysis: The Perceptual Organization of Sound, Cam-
bridge: MIT Press, Cambridge.

Brown, G. J., and Palomäki, K., 2004, “Techniques for speech processing in noisy and rever-
berant conditions,” this volume.

Colburn, H. S., 1995, “Computational models of binaural processing,” in Springer Handbook
of Auditory Research: Auditory Computation, H. L. Hawkins, T. A. McMullen, A. N.
Popper, and R. R. Fay, eds. New York: Academic Press, pp. 332–400.

Colburn, H. S., and Durlach, N. I., 1978, “Models of binaural interaction,” in Handbook of Per-
ception, E. C. Carterette and M. P. Friedman, eds., Academic Press, New York, pp.
467–518.

Cooke, M., Green, P. Josifovski, L., and Vizinho, A, 2001, “Robust automatic speech recogni-
tion with missing features and unreliable acoustic data,” Speech Communication, 34:
267–285.

Cooke, M., 2004, “Making sense of everyday speech: A glimpsing account,” this volume.

Culling, J. F., and Summerfield, Q., 1995, “Perceptual separation of concurrent speech sounds:
Absence of across–frequency grouping by common interaural delay,” J. Acoust. Soc.
Am. 98: 785–797.

Darwin, C. J., and Carlyon, R. P., 1995, “Auditory grouping,” in Handbook of Perception and
Cognition, Vol. 6: Hearing, B. C. J. Moore., ed. New York: Academic Press, pp.
347–386.

de Cheveigné, A., 2004, “The cancellation principle in acoustic scene analysis,” this volume.

de Cheveigné, A., and Baskind, A., 2003, “F0 estimation of one or several voices,” Proc. Euro-
speech, pp. 833–836.

Jeffress, L. A., 1948, “A place theory of sound localization,” J. Comparative and Physiological
Psychology 41: 35–39.



Chapter 9: Signal Separation and ASR 153

Juang, B.-H., 1991, “Speech recognition in adverse environments,” Computer Speech and Lan-
guage, 5: 275–294.

Lindemann, W., 1986, “Extension of a binaural cross–correlation model by contralateral inhibi-
tion. I. Simulation of lateralization for stationary signals,” J. Acoust. Soc. Am. 80,
1608–1622.

Kawahara, H., and Irino, T., 2004, “Underlying principles of a high–quality speech manipula-
tion system STRAIGHT and its application to speech segregation,” this volume.

Kawahara, H., Matsuda-Katsuse, I., and de Cheveigné, A., 1999, “Restructuring speech repre-
sentations using a pitch adaptive time–frequency smoothing and an instantaneous–
frequency–based F0 extraction: Possible role of a repetitive structure in sounds,”
Speech Communication, 27: 175–185.

Komenek, J., and Black, A., 2003, CMU_ARCTIC Databases,
http://www.festvox.org/cmu_arctic.

Palomäki, K. J., Brown, G. J., and Wang, D. L., 2004, “A binaural processor for missing data
speech recognition in the presence of noise and small–room reverberation,” Speech
Communication (accepted for publication).

Moreno, P. J., Raj, B., and Stern, R. M., 1996, “A vector taylor series approach for environ-
ment–independent speech recognition,” Proc. ICASSP, Atlanta, Georgia.

Raj, B., Parikh, V. N., and Stern, R. M., 1997, “The effects of background music on speech rec-
ognition accuracy,” Proc. ICASSP, Munich, Germany.

Raj, B., Seltzer, M. L., and Stern, R. M., 2004, “Reconstruction of missing features for robust
speech recognition,” Speech Communication Journal (accepted for publication).

Seltzer, M. L., Raj, B., and Stern, R. M., 2004, “A Bayesian Framework for Spectrographic
Mask Estimation for Missing Feature Speech Recognition,” Speech Communication
Journal (accepted for publication).

Singh, R., Stern, R. M. and Raj, B., 2002a, “Signal and feature compensation methods for
robust speech recognition,” Chapter in CRC Handbook on Noise Reduction in Speech
Applications, Gillian Davis, ed., CRC Press, Boca Raton.

Singh, R, Raj, B. and Stern, R. M., 2002b, “Model compensation and matched condition meth-
ods for robust speech rcognition,” Chapter in CRC Handbook on Noise Reduction in
Speech Applications, Gillian Davis, ed. CRC Press, Boca Raton.

Stern, R. M., Acero, A. Liu, F.-H. Liu, and Oshima, Y., 1996, “Signal processing for robust
speech recognition,” Chapter in Automatic Speech and Speaker Recognition, C.-H.
Lee, F. Soong, and K. Paliwal, eds., Kluwer Academic Publishers, Boston, pp. 351–
378.

Stern, R. M., Raj, B. and Moreno, P. J., 1997, “Compensation for environmental degradation in
automatic speech recognition,” Proc. ETRW on Robust Speech Recognition for
Unknown Communication Channels, Pont-au-Mousson, France, pp. 33–42.

Stern, R. M., and Trahiotis, C., 1995, “Models of binaural interaction,” in Handbook of Percep-
tion and Cognition, Volume 6: Hearing, B. C. J. Moore., ed., Academic Press, New
York, pp. 347–386.

Stern, R. M., and Trahiiotis, C., 1996), Models of Binaural Perception,” in Binaural and Spa-
tial Hearing in Real and Virtual Environments, R. Gilkey and T. R. Anderson, Eds.
New York: Lawrence Erlbaum Associates, pp. 499–531.



154 Speech Separation

Stern, R.. M., Trahiotis, C., and Ripepi, A. M, 2004, “Some conditions under which interaural
delays foster identification,” in Dynamics of Speech Production and Perception, G.
Meyer and P. Divenyi.eds., IOP Press, Amsterdam: IOP Press (in press).

Stockham, T. G., Cannon, T. M., and Ingebretsen, R. B., 2004, “Blind Deconvolution Through
Digital Signal Processing,” Proc. IEEE, 63: 678–692/

Sullivan, T. M., and Stern, R. M., 1993, “Multi–Microphone Correlation–Based Processing for
Robust Speech Recognition,” Proc. ICASSP, Minneapolis, Minnesota.

Wang, D., 2004, “On the use of ideal binary time–frequency masks for CASA,” this volume.

Zurek, P. M., “Binaural Advantages and Directional Effects in Speech Intelligibility, in Acous-
tical Factors Affecting Hearing Performance II, G. A. Studebaker and I. Hochberg,
Eds. Boston: Allyn and Bacon, 1993.



Chapter 10

Speech Segregation Using an Event–synchronous
Auditory Image and STRAIGHT

Toshio Irino
Faculty of Systems Engineering, Wakayama University, Wakayama, JAPAN
irino@sys.wakayama-u.ac.jp

Roy D. Patterson
CNBH, Physiology Department, Cambridge University, Cambridge, UK
roy.patterson@mrc-cbu.cam.ac.uk

Hideki Kawakhara
Faculty of Systems Engineering, Wakayama University, Wakayama, JAPAN
kawahara@sys.wakayama-u.ac.jp

1    INTRODUCTION

Speech segregation is an important aspect of speech signal processing, and
many segregation systems have been proposed (Parsons, 1976, Lim et al.,
1978). Most of the systems are based on the short–time Fourier transform, or
a sinusoid model, and they segregate sounds by extracting harmonic compo-
nents located at integer multiples of the fundamental frequency. It is,
however, difficult to extract truly harmonic components when the estimation
of the fundamental frequency is disturbed by concurrent noise, the error
increases in proportion to the harmonic number.

We have developed an alternative method for speech segregation based on
the Auditory Image Model (AIM) and a scheme of event–synchronous pro-
cessing. AIM was developed to provide a reasonable representation of the
“auditory image” we perceive in response to sounds (Patterson et al., 1992,
1995). We have also developed an “auditory vocoder” (Irino et al., 2003a,b,
2004) for resynthesizing speech from the auditory image using an existing,
high–quality vocoder, STRAIGHT (Kawahara et al., 1999). The auditory rep-
resentation preserves fine temporal information, unlike conventional
window–based processing, and this makes it possible to do synchronous
speech segregation. We also developed a method to convert F0 into event
times and demonstrated the potential of the method in low SNR conditions.
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This paper presents a procedure for segregating speakers using an event–
synchronous auditory image with two different methods of resynthesizing the
speech of the individual speakers. We also show that the system is robust in
the presence of errors in fundamental frequency estimation which are
unavoidable.

2 AUDITORY VOCODER

We propose two versions of the auditory vocoder as shown in Figs 10.1
and 10.2. They involve the Auditory Image Model (AIM) (Patterson et al.,
1995), a robust F0 estimator (e.g., Nakatani and Irino, 2002), and a synthesis
module based either on STRAIGHT (Fig. 10.1) or an auditory synthesis filter-
bank (Fig. 10.2). The speech segregation is performed in the event–
synchronous version of AIM which is common in the two versions. In section
2.1, we describe the event–synchronous procedure to enhance speech repre-
sentations and a method for converting F0 to event times. In section 2.2, we
describe two procedures for resynthesizing signals from the auditory image.

2.1 Event based Auditory Image Model

AIM performs its spectral analysis with a gammatone or gammachirp fil-
terbank on a quasi-logarithmic (ERB) frequency scale. The output is half–
wave rectified and compressed in amplitude to produce a simple form of Neu-
ral Activity Pattern (NAP). The NAP is converted into a Stabilized Auditory
Image (SAI) using a strobe mechanism controlled by an event detector. Basi-
cally, it calculates the times between neural pulses in the auditory nerve and
constructs an array of time–interval histograms, one for each channel of the
filterbank.

2.2 Event detection

An event–detection mechanism was introduced to locate glottal pulses
accurately for use as strobe signals. The upper panel of Fig. 10.3 shows about
30 ms of the NAP of a male vowel. The abscissa is time in ms, the ordinate is
the center frequency of the gammatone auditory filter in kHz. The mechanism
identifies the time interval associated with the repetition of the neural pattern
and the interval is the fundamental period of the speech at that point. Since the
NAP is produced by convolution of the speech signal with the auditory filter
and the group delay of the auditory filter varies with center frequency, it is
necessary to compensate for group delay across channels when estimating
event timing in the speech sound. The middle panel shows the NAP after
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Figure 10.1. Configuration of the auditory vocoder: The gray areas show the processing path
used for parameter estimation. Once the parameters are fixed, the path with the black arrows is
used for resynthesizing speech signals.

Figure 10.2. Configuration of auditory vocoder using an auditory synthesis filterbank. There is
no training path.

group delay compensation, the operation aligns the responses of the filters in
time to each glottal pulse. The solid line in the bottom panel shows the tempo-
ral profile derived by summing across channels in the compensated NAP in
the region below 1.5 kHz. The peaks corresponding to glottal pulses are
readily apparent in this representation.

We extracted peaks locally using an algorithm similar to adaptive thresh-
olding (Patterson et al., 1995). The dotted line is the threshold used to identify
peaks, indicated by circles and vertical lines. After a peak is found, the thresh-
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Figure 10.3. Auditory event detection for clean speech. From Irino, et al. (2003a), © IEEE
2003

Figure 10.4. Selection of Event time by F0 information.

old decreases gradually to locate the next peak. We also introduced a form of
prediction to make the peak detection robust. The threshold is reduced by a
certain ratio when the detector does not find activity at the expected period,
defined as the median of recent periods. This is indicated by the sudden drop
in threshold towards the end of each cycle.
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Tests with synthetic sounds confirmed that this algorithm works suffi-
ciently well when the input is clean speech. It is, however, difficult to apply
this method under noisy conditions particularly when the SNR is low. So, we
enlisted the F0 information to improve event time estimation.

2.2.1 A robust F0 estimator for event detection

It is easier to estimate fundamental frequency, F0, than event times for a
given SNR. The latest methods for F0 estimation are robust in low SNR con-
ditions and can estimate F0 within 5% of the true value in 80% of voiced
speech segments in babble noise, at SNRs as low as 5 dB (Nakatani and Irino,
2002). So, we developed a method of enhancing event detection with F0
information.

Figure 10.4 shows a block diagram of the procedure. First, candidate event
times are calculated using the event detection mechanism described in the
previous section. The half–life of the adaptive threshold is reduced to avoid
missing events in target speech. The procedure extracts events for both the
target and background speech. Then we produce a temporal sequence of the
pulses located at the candidate times.

For every frame step (e.g., 3 ms), the value of F0 of the target speech in
that frame is converted into a temporal function consisting of a triplet of gaus-
sian functions with a periodicity of 1/F0. The triplet function is, then, cross–
correlated with the event pulse sequence to find the best matching lag time. At
this best point, the temporal sequence and the triplet of gaussians are multi-
plied together so as to derive a value similar to a likelihood for each event.
The likelihood–like values are accumulated and applied to the thresholding
with an arbitrary value to derive estimates of the event times for the target
speech signal.

2.2.2 Event synchronous strobed temporal integration

Using the target event times, we can enhance the auditory image for the
target speech. Figure 10.5a shows a schematic plot of a NAP after group delay
compensation for a segment of speech with concurrent vowels. The target
speech with a 10-ms glottal period is converted into the black activity pattern,
while the background speech with a 7-ms period is converted into the gray
pattern. For every target event time (every 10 ms), the NAP is converted into
a two-dimensional auditory image (AI) as shown in Fig. 10.5b. The horizontal
axis of the AI is time–interval (TI) from the event time, the vertical axis is the
same as the NAP. As shown in Fig. 10.4b, the activity pattern for the target
speech always occurs at the same time–interval, whereas that for the back-
ground speech changes position. So, we get a “stablized” version of the target
speech pattern in this “instantaneous” auditory image (AI).
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Temporal integration is performed by weighted averaging of successive
frames of the instantaneous AI as shown in Fig. 10.5c, and this enhances the

Figure 10.5. Event synchronous strobes for concurrent speech.

pattern for the target speech relative to that for the background speech. In this
way, the fine structure of the target pattern is preserved and stabilized when
the event detector captures the glottal event of the target speech correctly. The
weighted averaging is essentially equivalent to conventional STI where the
weighting function is a ramped exponential with a fixed half–life. In the fol-
lowing experiment, we used a hanging window spanning five successive SAI
frames, although tests indicated that the window shape does not have a large
effect as long as the window length is correct.

2.3 Synthesis procedure

We can now produce an auditory image in which the pattern of the target
speech is enhanced. It only remains to resynthesize the target speech from
their auditory representations.

2.3.3 Resynthesis using STRAIGHT

Figure 10.1 includes a synthesis method using STRAIGHT and a mapping
module between the auditory image and a time–frequency representation
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based on the STFT. The method is described by Irino et al. (2003a,b). Briefly,
each frame of the 2-D stabilized auditory image (SAI) is converted into a
Mellin Image (MI), and then the MI is converted into a spectral distribution
using a warped-DCT. The mapping function between the MI and the warped-
DCT is constructed using a non-linear multiple regression analysis (MRA).
Fortunately, it is possible to determine the parameter values for the non-linear
MRA in advance, using clean speech sounds and the analysis section of
STRAIGHT as indicated in Fig. 10.1 gray arrows. The speech sounds are,
then, reproduced using a spectral filter excited with the pulse/noise generator
shown in Fig. 10.1 in the synthesis section of STRAIGHT. The pulse/noise
generator is controlled by the robust F0 estimator in the left box.

This version works fairly well and is expected to capture fine structure of
speech signal in the SAI and MI. But it is rather complex and inflexible
because training is required to establish the mapping function. Moreover, the
quality of the resynthesized sounds was not always good despite the use of
STRAIGHT. So, we rebuilt the synthesis procedure using a channel vocoder
concept and introduced an approximation in the mapping function.

2.3.4 Auditory channel vocoder

Figure 10.2 shows the revised version based on an auditory filterbank and
channel vocoder (Gold and Radar, 1967). The channel vocoder consisted of a
bank of band–limited filters and pulse/noise generators controlled by previ-
ously extracted information about fundamental frequency and voicing. There
were two banks of gammachirp/gammatone filters for analysis and synthesis
because of the temporal asymmetry in the filter response. But the synthesis
filterbank is not essential when we compensate for the phase lag of the analy-
sis filter. The amplitude information of the Basilar Membrane Motion (BMM)
is recovered from the SAI via the NAP as described in the next section. The
phase information of the BMM is derived by the filterbank analysis of the sig-
nal from a pulse/noise generator. We employed the generator in STRAIGHT
since it is known to produce pulses and noise with generally flat spectra, and it
does not affect the amplitude information. The amplitude and phase informa-
tion is combined to produce the real BMM for resynthesis.

2.3.5 Mapping function from SAI to NAP

Mapping from the SAI to the NAP required one more enhancement. In the
previous version, we took the fine temporal structure in both the SAI and
NAP into account when designing the mapping function. As a result, it
required a non-linear mapping between multiple inputs and a single output. In
the current study, we assumed that the frequency profile of the SAI provides a
reasonable representation of the main features of the target speech when we
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restrict the range of integration in the appropriate way. As shown in Fig.
10.5c, the target feature is concentrated in the time–interval dimension when

Figure 10.6. Waveform and spectrum when the F0 estimation error is 5%.(a) (b) original
sound, (c)(d) mix of sound and babble noise, (e)(f) signals segregated by the proposed method,
and (g)(h) by a comb–filter method.

the filter center frequency, is high, and it overlaps the next cycle when
the center frequency is low. The activity of the interfering speech appears at a
low level in the rest of the SAI. So, we limited the range of integration

on the time–interval axis to

is constant. is 5 ms when is low and 1.5 ms when is high.
We applied a weighting function to produce a flat NAP from a regular SAI.
The resulting synthetic sounds were reasonably good. Moreover, the assump–
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tion simplifies the procedure. It would probably be possible to enhance the
sound quality using the fine structure in the SAI.

3 EXPERIMENTS

Many segregation procedures require precise F0 information for effective
segregation. This is unrealistic because F0 estimation is never error–free and
natural vocal vibration contains jitter. So it is important to evaluate how
robust the system is to jitter and errors in F0 estimation. The new event find-
ing procedure produces performance that is the same, or a little better, than
the previous version. It is easier to listen to the target sound than the mix of
target speech and distractor speech, or the mix of target speech and babble
noise.

We compared the new method to a comb–filter method using sound mix-
tures where F0 is 5% more than the original value. Figures 10.6a and 10.6b
show the original, isolated target speech and its spectrogram. The target sound
was mixed with babble noise at an SNR of 0 dB to produce the wave in Fig.
10.6c. At this level, a listener needs to concentrate to hear the target speech in
the distracter. The spectrogram in Fig. 10.6d shows that the features of the tar-
get speech are no longer distinctive. The target speech (Fig. 10.6e) extracted
by the auditory vocoder was distorted but entirely intelligible, whereas the
distractor speech was decomposed into a non–speech sound which greatly
reduced the interference. The spectrogram in Fig. 10.6f shows that the
vocoder resynthesis restores the harmonic structure of the target speech but
not the distractor speech, e.g., compare the restoration of harmonic structure
just after 800 ms with the lack of harmonic restoration in the region just
before 800 ms.

For comparison, we applied a comb–filter method based on the STFT to
the same sound. The target speech extracted in this way sounds low–pass fil-
tered and the babble noise is relatively strong. The target speech wave (Fig.
10.6g) is noisier than the wave in Fig. 10.6e. The spectrogram in Fig. 10.6f
shows that much of the harmonic structure is lost by the comb–filter method,
particularly the higher harmonics. This follows directly from the fact that the
error increases in proportion to harmonic number. It is a fundamental defect.

4 CONCLUSIONS

We have presented methods to segregate concurrent speech sounds using
an auditory model and a vocoder. Specifically, the method involves the Audi–
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tory Image Model (AIM), a robust F0 estimator, and a synthesis module based
either on STRAIGHT or an auditory synthesis filterbank. The event–synchro-
nous procedure enhances the intelligibility of the target speaker in the
presence of concurrent background speech. The resulting segregation perfor-
mance is better than with conventional comb–filter methods whenever there
are errors in fundamental frequency estimation as there always are in real con-
current speech. Test results suggest that this auditory segregation method has
potential for speech enhancement in applications such as hearing aids.

5 ACKNOWLEDGMENTS

This work was partially supported by a project grant from the faculty of
systems engineering of Wakayama University, by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research (B),
15300061, 2003, and by the UK Medical Research Council (G9901257).

References

Gold, B. and Rader, C. M., 1967, The Channel Vocoder, IEEE Trans. Audio and Electroacous-
tics, Vol. AU-15, 148–161.

Irino, T., Patterson, R.D., and Kawahara, H., 2004, Speech segregation using an auditory
vocoder with event–sychronous enhancements, Proc 18th International Congress on
Acoustics (ICA 2004), vol. 4, pp. 3025–3028, Kyoto, Japan.

Irino, T., Patterson, R.D., and Kawahara, H., 2003a, Speech segregation using event synchro-
nous auditory vocoder, in Proc. IEEE ICASSP 2003, Hong Kong.

Irino, T., Patterson, R.D., and Kawahara, H., 2003b, Speech segregation based on fundamental
event information using an auditory vocoder, Proc. 8th Euro Conf. on Speech Comm.
and Tech. (Eurospeech 2003, (Interspeech 2003)), 553–556, Geneva, Switzerland.

Kawahara, H., Masuda-Katsuse, I., and de Cheveigne, A., 1999, Restructuring speech represen-
tations using a pitch–adaptive time–frequency smoothing and an instantaneous–fre-
quency–based F0 extraction: Possible role of a repetitive structure in sounds, Speech
Comm, 27, 187–207.

Lim, J.S., Oppenheim, A.V., and Braida, L.D., 1978, Evaluation of an adaptive comb filtering
method for enhancing speech degraded by white noise addition, IEEE, Trans. ASSP,
ASSP–26, 354–358.

Nakatani, T. and Irino, T., 2002, Robust fundamental frequency estimation against background
noise and spectral distortion, ICSLP 2002, 1733–1736, Denver, Colorado.

Parsons, T.W., 1976, Separation of speech from interfering speech by means of harmonic
selection, J.Acoust. Soc.Am., 60, 911–918.

Patterson, R.D., Allerhand, M., and Giguere, C., 1995, Time–domain modelling of peripheral
auditory processing: a modular architecture and a software platform, J. Acoust. Soc.
Am., 98, 1890–1894. http://www.mrc-cbu.cam.ac.uk/cnbh/



Chapter 10: Event-synchronous Auditory Image and STRAIGHT 165

Patterson, R.D., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., and Allerhand, M.,
1992, Complex sounds and auditory images, In: Auditory physiology and perception,
Proc. of the 9h Internat. Symposium on Hearing, Y. Cazals, L. Demany, K. Horner
(eds), Pergamon, Oxford, 429-446.



This page intentionally left blank



Chapter 11

Underlying Principles of a High–quality Speech
Manipulation System STRAIGHT and Its
Application to Speech Segregation

Hideki Kawahara
Faculty of Systems Engineering Wakayama University, Wakayama, JAPAN
kawahara@sys.wakayama-u.ac.jp

Toshio Irino
Faculty of Systems Engineering Wakayama University, Wakayama, JAPAN
irino@sys.wakayama-u.ac.jp

1 INTRODUCTION

Human performance in auditory perceptual tasks has been investigated by
many researchers. Psychophysical methods have been successfully applied to
measure various aspects using elementary sound stimuli, and there are still
continuing efforts to form a growing body of scientific knowledge in this
field. Speech perception also has been investigated extensively, especially
since the advent of electrical engineering. However, additional methodologies
need to be developed to test all aspects of human performance, especially per-
formance in natural everyday situations.

A human operate with highly nonlinear systems, thus it is generally diffi-
cult to understand its performance and functions only from responses to
idealized (simplified or synthetic) stimuli. A better way of dealing with such
complex nonlinear systems is to use ecologically relevant stimuli. In spite of
this conceptual advantage, there has been an obvious difficulty for this
approach to be feasible: the controllability of test stimuli. Usually, ecologi-
cally relevant stimuli, in other words, natural stimuli, do not allow precise
control of physical parameters. This is a problem, because it is a prerequisite
for scientific research. In response, a very high–quality speech manipulation
system STRAIGHT (Kawahara et al., 1999a) was developed to provide a
means of resolving this apparent contradiction.
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2 UNDERLYING PRINCIPLES OF STRAIGHT

STRAIGHT is basically a channel vocoder based on F0 adaptive proce-
dures. It is worthwhile to briefly introduce STRAIGHT (Speech
Transformation and Representation based on Adaptive Interpolation of
weiGHTed spectrogram), which was originally designed for speech percep-
tion research using a source filter architecture. The key concept of
STRAIGHT is to represent signals in terms of parameters that embody essen-
tial aspects of auditory perception. In other words, special representations are
sought for tone, noise and transient. For tone, a time–frequency representation
that does not suffer from interference caused by periodic excitation is intro-
duced. In the first stage of analysis, F0 adaptive design of a complementary
set of time windows effectively eliminates temporal variations in the power
spectrum estimate. Then, a spline–based F0 adaptive smoothing in the fre-
quency domain eliminates variations due to harmonic structure. For transient,
fixed–point–based methods to extract and to represent auditory events are
introduced.

The procedures used in STRAIGHT are grouped into three subsystems: a
source information extractor, a smoothed time–frequency representation
extractor, and a synthesis engine consisting of an excitation source and a time
varying filter. Underlying principles and implementation of the second and
the third components are given in the following sections.

2.1 Separating source and filter information

Separating speech information into mutually independent filter parameters
and source parameters is important for enabling flexible speech manipula-
tions. The key idea for selectively eliminating interferences caused by
periodicity is based on a new interpretation of the role of periodic excitation
of speech. Periodic excitation can be interpreted as a systematic sampling
operation of the underlying time–frequency representation of speech that
reflects smooth movement of the articulatory organs. This sampled informa-
tion can be used to reconstruct the underlying time–frequency representation
by interpolating sampled points. This two–dimensional interpolation is then
reduced to a one-dimensional smoothing operation.

The need for time–domain smoothing is eliminated by using an F0 adap-
tive complimentary time–window pair. The primary window is an F0 adaptive
window made from an isometric Gaussian window and an F0 adaptive Bar-
tlett window,
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where * represents convolution. The corresponding complimentary window
is made from this window by introducing the following modulation.

The reduced interference spectrogram is calculated with the following
equation with a numerically optimized mixing coefficient A power spec-
trum with reduced phase interference, is represented as a weighted
squared sum of the power spectra, and using this compensa-
tory window and the original time window, respectively.

The procedure described above eliminates needs of time–domain interpo-
lation; this interpolation is only necessary in the frequency domain. F0
adaptive spectral smoothing based on a cardinal B-spline basis function
removes interferences due to signal periodicity in the spectral slice. It should
be noted that such smoothing operation needs to compensate for the over–
smoothing effects due to time–windowing. Details are given in the literature
(Kawahara et al., 1999a). Figures 11.1, 11.2 show how interferences in a
standard F0 adaptive spectrogram are systematically removed.

In the synthesis part of STRAIGHT, the filtering component is imple-
mented as the minimum phase impulse response calculated from the
smoothed time–frequency representation through several stages of FFTs. This
FFT–based implementation enables source F0 control with a finer frequency
resolution than that determined by the sampling interval of the speech signal.
This implementation also enables suppression of “buzz–like” timbre, which is
commonly found in conventional pulse excitation, by introducing group delay
randomization in the higher frequency region.



170 Speech Separation

Figure 11.1. 3D spectrogram using a F0 adaptive Gaussian window. The vertical wall shows
the original waveform and the windowing function.

Figure 11.2. 3D spectrogram using a F0 adaptive complementary windows and spline based
spectral smoothing. (This is the information representation in STRAIGHT.) The vertical wall
shows the original waveform and the windowing function.
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However, previous studies presented no dependable methodologies to
extract control parameters of this group delay randomization from the speech
signal under study. Therefore, this is the weakest part of the STRAIGHT sys-
tem. We have developed new procedures to extend the source information
extractor of the STRAIGHT system. The procedures also provide useful
means to visualize voice–quality–related source parameters (Kawahara et al.,
1999b, 2000, 2001a).

2.2 F0 estimation

Speech signals are not exactly periodic: F0s and waveforms are always
changing and fluctuating. The instantaneous frequency–based F0 extraction
method used in STRAIGHT was proposed (Kawahara et al., 1999b) to repre-
sent these nonstationary speech behaviors and was designed to produce
continuous and high–resolution F0 trajectories suitable for high–quality
speech modifications. Estimation of the aperiodicity measures in the fre-
quency domain is dependent on this initial F0 estimate, which is itself based
on a fixed–point analysis of a mapping from filter–center frequencies to their
output instantaneous frequencies.

The F0 estimation method of STRAIGHT assumes that the signal has the
following nearly harmonic structure,,

where represents a slowly changing instantaneous amplitude and
also represents slowly changing perturbation of the k-th harmonic component.
In this representation, F0 is the instantaneous frequency of the fundamental
component where k=1. The F0 extraction procedure also employs instanta-
neous frequencies of other harmonic components to refine F0 estimates.

By using band–pass filters with complex number impulse responses, fil-
ter–center frequencies and instantaneous frequencies of filter outputs provide
an interesting means of extracting the sinusoidal components. Let be
the mapping from the filter–center angular frequency to the instantaneous
frequency of filter output. Then, angular frequencies of sinusoidal compo-
nents are extracted as a set of fixed points based on the following definition.
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This relation between filter–center frequencies and harmonic components
was reported by number of authors (Charpentier 1986, Abe et al., 1995). A
similar relation to resonant frequencies was also described in modeling audi-
tory perception (Cooke 1993). In addition to these findings, geometrical
properties of the mapping around fixed points were found to be very useful in
analyzing source information (Kawahara et al., 1999b).

The signal–to–noise ratio of the sinusoidal component and the background
noise (represented as C/N: carrier-to-noise ratio hereafter) is approximately
represented using first– and second–order partial derivatives of this mapping
surface. Please refer to (Kawahara et al., 1999b) for details. Combined with
this C/N estimation method, the following nearly isotropic filter impulse
response is designed.

where * represents convolution and represents a time stretching factor,
which is slightly larger than 1 in order to refine frequency resolution. With a
log–linear arrangement of filters, a fundamental harmonic component can be
selected as the fixed point having the highest C/N. Then, the initial F0 esti-
mate is used to select several (in our case, the lower three) harmonic
components for refining the F0 estimate using C/N and the instantaneous fre-
quency for each harmonic component.

Figure 11.3 shows an example to illustrate how the log–linear filter
arrangement makes the fundamental component–related fixed point salient. It
is clear that the mappings stay flat only around the fundamental component.

Figure 11.4 shows an example of STRAIGHT’s source information dis-
play. It illustrates how C/N information is used for determining the
fundamental component. In this figure, C/N information is shown on the top
panel and the bottom panel. Please refer to the caption for further explanation.

As mentioned in the previous paragraph, this F0 estimation procedure
comprises the C/N estimation for each filter output as its integral part, and it is
applicable to aperiodicity evaluation (Kawahara et al., 2001a).
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Figure 11.3. Three dimensional representation of the filter center frequency to the output
instantaneous frequency map. The surface represents the mapping. Red dots represent the fixed
point of the mapping. F0 can be found as fixed points on the unique flat surface. Note that other
fixed points are not stable in time. Speech material is the sustained Japanese vowel /a/ spoken
by a male speaker. Temporal stretch parameter =1.1 was used. From Kawahara (2003b).

3 SYSTEMATIC DOWNGRADING

So far, the outline of a new versatile speech analysis, modification and
synthesis system STRAIGHT has been introduced. STRAIGHT can resynthe-
size speech sounds from smoothed time–frequency representation,
fundamental frequency and aperiodicity information at each time–frequency
location. By using these three parameters, high–quality resynthesized speech,
which is sometimes indistinguishable from natural speech in terms of natural-
ness, can be generated. These are objective parameters, and they can be
controlled precisely in each physical dimension, which means that we can
manipulate physical parameters of virtually natural speech. This section out-
lines how to use this versatility to investigate human performance in speech
perception in natural, everyday situations. It is an exemplar–based approach;
in other words, it is a type of data–mining or deductive approach. “Systematic
downgrading” is one such strategy we have been adopting.
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Figure 11.4. Extracted source information from the French singing by a male singer. The top
panel represents fixed points extracted using a circle symbol. The overlaid image represents the
C/N ratio for each filter channel (24 channels/octave covering from 80 Hz to 600 Hz). The
lighter the color the higher the C/N. The middle panel shows the total energy (thick line) and
the higher frequency (> 3 kHz) energy (thin line). The next panel illustrates an extracted F0.
The bottom panel shows the C/N ratio for each fixed point. From Kawahara (2003b).

The strategy “systematic downgrading,” was originally proposed in the
context of our research on scat singing (Kawahara et al., 2001b, 2002a,
2002b), where non-linguistic and para-linguistic information plays indispens-
able roles. The central idea of “systematic downgrading” is to keep test
stimuli as ecologically relevant (in other words, highly natural) as possible.
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The STRAIGHT–based morphing fulfills requirements for ecological rele-
vance (high quality resynthesized speech) and precise control of physical
parameters simultaneously.

The following steps outline systematic downgrading in the case of investi-
gating regularities in voice quality.

Prepare the reference speech and the target speech that have typical
voice quality.

Morph the reference speech to the target speech by careful manual
transformation of parameters.

Extract regularities from the manual transformation and design series
of approximation functions of the transformation.

Morph the reference speech by the approximation functions AND
refine it with additional manual modifications.

Repeat steps (3) and (4) until a satisfactory approximation function is
designed.

10.

11.

12.

13.

14.

The procedure is a generalized version of the “null point procedure,”
which is a common practice to minimize disturbances to the system under
study. It ensures that the critical subjective evaluation is performed only for
high–quality (ecologically relevant) stimuli, which is especially important
when conducting research on para– and nonlinguistic aspect of speech,
because they are the most fragile attributes against various types of distortion.
It should also be noted that step (3) is inevitably exploratory, even though
multivariate analysis may help in the acquisition of insights. The first step of
such an exploratory investigation would be to implement selective morphing.
Similar examples can be found in our papers (Kawahara and Matsui, 2003,
Matsui and Kawahara, 2003) and in a literature on emotional speech (Bulut et
al., 2002).

4 AUDITORY MORPHING

Morphing is a procedure to regenerate a signal from a representation on
the shortest trajectory between anchor points in an abstract distance space
with a distance metric It is necessary to introduce an approximation that
yields practical implementation of this general morphing procedure. One such
approximation for speech morphing is to define the new  distance as a
composite operation of a coordinate transformation T and a localized distance
metric
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where subscripts ref and tgt represent “reference” and “target,” respectively.
If the transformation T does not have any penalty due to the transformation,
and if the localized distance metric is Euclidean, the morphing procedure is
reduced to a linear interpolation on the reference coordinate. The procedure
used in our morphing study is based on this approximation. This procedure is
analogous to visual morphing when the time–frequency coordinate and the
attributes on the coordinate system are replaced by the shape and color
(including intensity and texture).

There are several technical issues involved in implementing the procedure.
Specifically, the coordinate system and the localized distance metric must
reflect auditory perceptual characteristics, and the transformation must be as
simple as possible. In this article, the time–frequency plane is used as the
coordinate system. The transformation is represented as a simple piecewise
bilinear transformation, because, unlike the image morphing, the time–fre-
quency coordinate is not isotropic. In our preliminary experiences, it was
found that for morphing emotional speech samples digitized at 44.1 kHz and
16 bit, only up to five anchor points on a frequency axis at one temporal loca-
tion and up to four temporal anchor points for one CV syllable were
sufficient. For the fundamental frequency, it is relevant to morph the parame-
ter in the log–frequency domain, because the F0 dynamics is represented in
terms of a linear dynamical equation in the log–frequency domain (Fujisaki
1998). For the spectral density, morphing is calculated on dB representation,
because it is one of relevant approximations of intensity perception. The
time–frequency periodicity index (Kawahara et al., 1999b, 2001a) is also
transformed by the same mapping function. This is one of the contributing
factors on speech segregation.

4.1 Illustration of the method

The following figures illustrate how to define and to use anchor points for
auditory morphing based on STRAIGHT. Figure 11.5 shows anchor points
that were manually defined for morphing two speech samples of a word spo-
ken under different emotional contexts. The information given by Fig. 11.5 is
used to deform the time–frequency coordinate system of the target speech to
align it with the reference speech. Figure 11.6 shows how the target uniform
time–frequency grid is deformed. By using this deformation, all spectral and
source parameters in two end points (two speech examples) are aligned in the
targets time–frequency coordinate system. This alignment simplifies mor-
phing interpolation at each time–frequency location.
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Figure 11.5. Smooth spectrographic representations of words played by a male actor under
neutral (left) and angry (right) emotional conditions. Anchor points in the time–frequency
domain are plotted as open circles and temporal anchors are plotted as vertical dash–dot lines.
From Kawahara and Matsui (2003), © 2003 IEEE.

Figure 11.6. Regular time–frequency grid in the target coordinate system. It was transformed
into the reference coordinate system. From Kawahara and Matsui (2003), © 2003 IEEE.

4.2 Quality of morphed speech

Figure 11.7 shows an example of naturalness evaluation results using ten
subjects (six male and four female) on morphed emotional speech samples
including the original natural speech samples (Matsui and Kawahara, 2003).
Through this evaluation it was deduced that interpolated morphing, which
includes simple analysis and synthesis by the STRAIGHT–based morphing
procedure, provides manipulated speech samples indistinguishable from orig-
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inal natural speech samples in terms of naturalness. It may be safe to conclude
that at least for naive subjects our morphing procedure is good enough to start
systematic downgrading. However, for highly trained listeners, STRAIGHT
is still found to add some specific coloring to processed speech, suggesting
that there is still room for further investigations on STRAIGHT, and it is our
responsibility to improve it.

5 EXTENSION AND APPLICATIONS

A new formulation of the STRAIGHT algorithm provides a means of tra-
versing apparently different speech coding schema (Kawahara et al., 2004).
This extension will make it possible to test human performance in speech seg-
regation under more realistic conditions. Application of STRAIGHT to an
auditory inversion problem based on the AIM (Auditory Image Model, Patter-
son et al., 1995) system yielded a unique procedure for auditory segregation
(Irino et al., 2003). Furthermore, it also provides a means to test the attractive
hypothesis that human auditory system is designed to be capable of segregat-
ing information about the size and the shape of the vocal tract (Irino and
Patterson, 2002).

Figure 11.7. Naturalness evaluation of morphed and original speech samples. Bars represent
original speech samples and circles represent morphed samples. The morphing rate “0” corre-
sponds to “neutral” emotion and “1” corresponds to “anger” emotion. A Japanese word
/koNnitiwa/ (hello in English) spoken by a male actor was used.
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6 CONCLUSION

Testing human performance using ecologically relevant stimuli is crucial.
STRAIGHT provide powerful means and strategies for doing this. This article
outlined the underlying principles of STRAIGHT and the morphing proce-
dure to provide general understanding for potential users of a new research
strategy, “systematic downgrading.” The strategy seems to open up new
research possibilities of testing human performance without disturbing their
natural conditions.
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1 INTRODUCTION

In a natural environment, a target sound, such as speech, is usually mixed
with acoustic interference. A sound separation system that removes or attenu-
ates acoustic interference has many important applications, such as automatic
speech recognition (ASR) and speaker identification in real acoustic environ-
ments, audio information retrieval, sound-based human computer interaction,
and intelligent hearing aids design.

Because of its importance, the sound separation problem has been exten-
sively studied in signal processing and related fields. Three main approaches
are speech enhancement (Lim, 1983; O’Shaughnessy, 2000), spatial filtering
with a microphone array (van Veen and Buckley, 1988; Krim and Viberg,
1996), and blind source separation using independent component analysis
(ICA) (Lee, 1998; Hyvärinen et al., 2001). Speech enhancement typically
assumes certain prior knowledge of interference; for example, the standard
spectral subtraction technique is easy to apply and works well when the back-
ground noise is stationary. However, the enhancement approach has difficulty
in dealing with the unpredictable nature of general environments where a
variety of intrusions, including nonstationary ones such as competing talkers,
may occur. The objective of spatial filtering, or beamforming, is to estimate
the signal that arrives from a specific direction through proper array configu-
ration, hence filtering out interfering signals from other directions. With a
large array spatial filtering can produce high-fidelity separation, and at the
same time attenuate much signal reverberation. A main limitation of spatial
filtering is what I call configuration stationarity: It has trouble tracking a tar-
get that moves around or switches between different sound sources. Closely
related to spatial filtering is ICA-based blind source separation, which
assumes statistical independence of sound sources and formulates the separa-
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tion problem as that of estimating a demixing matrix. To make standard ICA
formulation work requires a number of assumptions on the mixing process
and the number of microphones (van der Kouwe et al., 2001). ICA gives
impressive separation results when its assumptions are met. On the other
hand, the assumptions also limit the scope of the applicability. For example,
the stationarity assumption on the mixing process – similar to the configura-
tion stationarity in spatial filtering – is hard to satisfy when speakers turn their
heads or move around.

While machine separation remains a challenge, the auditory system shows
a remarkable capacity for sound separation, even monaurally (i.e. with one
microphone). According to Bregman (1990), the auditory system organizes
the acoustic input into perceptual streams, corresponding to different sources,
in a process called auditory scene analysis (ASA). Bregman further asserts
that ASA takes place in two stages in the auditory system: The first stage
decomposes the acoustic mixture into a collection of sensory elements or seg-
ments, and the second stage selectively groups segments into streams. This
two-stage conception corresponds in essence to an analysis-synthesis strategy.
Major ASA cues include proximity in frequency and time, harmonicity,
smooth transition, onset synchrony, common location, common amplitude
and frequency modulation, and prior knowledge.

Research in ASA has inspired a series of computational studies to model
auditory scene analysis (Weintraub, 1985; Cooke, 1993; Brown and Cooke,
1994; Ellis, 1996; Wang and Brown, 1999). Mirroring the above two-stage
conception, computational auditory scene analysis (CASA) generally
approaches sound separation in two main stages: segmentation and grouping.
In segmentation, the acoustic input is decomposed into sensory segments,
each of which likely originates from a single source, by analyzing harmonic-
ity, onset, frequency transition, and amplitude modulation. In grouping, the
segments that likely originate from the same source are grouped, based mostly
on periodicity analysis. In comparison with other separation approaches, the
main CASA success has been in monaural separation with minimal assump-
tions.1 It also creates a new set of challenges and demands, such as reliable
multipitch tracking and special handling of unvoiced speech.

In comparison with other well-established separation approaches, CASA
faces a somewhat distinct issue: there is no consensus on how to quantita-
tively evaluate a CASA system (Rosenthal and Okuno, 1998). Almost every
study adopts its own evaluation criteria. This is partly due to the fact that
CASA is still in its infancy, but it may reflect deeper confusion on the compu-
tational goal of auditory scene analysis. The lack of common evaluation

1.More accurately, CASA also makes a number of assumptions, but such assumptions
tend to conform to the constraints under which the auditory system operates.
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criteria makes it difficult to document and communicate the progress made in
the field. Sensible evaluation criteria can also serve as the guiding principle
for model development.

This chapter intends to examine the goal of CASA. After analyzing the
advantages and disadvantages of different computational objectives, I suggest
ideal time-frequency (T-F) mask as the computational goal of auditory scene
analysis. The remainder of the chapter is organized as follows. The next sec-
tion reviews different CASA evaluation criteria. Section 3 is devoted to a
general discussion of the CASA goal, including an analysis of several alterna-
tive CASA objectives. Section 4 introduces the ideal binary mask, analyzes
their properties, and argues for their use as the CASA goal. Section 5
describes two models that explicitly estimate the ideal binary mask. Finally,
Section 6 concludes the chapter.

2 CASA EVALUATION CRITERIA

CASA criteria that have been suggested can be divided into the following
four categories: Direct comparisons between segregated target and premixing
target, changes in automatic speech recognition (ASR) score, evaluation with
human listening, and fit with biological data. Each is described below.

Comparison with premixing target. Obviously this assumes the
availability of premixing sound sources, which is not an unreasonable
assumption for system evaluation. The evaluation criterion employed
in Cooke’s study (1993) is the match between a model-generated
group of target elements and the group of elements in clean target
speech. Brown and Cooke (1994) use a segregated target stream,
which is a binary T-F mask, to resynthesize target speech and noise
intrusion, and then calculate a normalized ratio between resynthe-
sized speech and resynthesized noise. Subsequently, Wang and
Brown (1999) use conventional signal-to-noise ratio (SNR), mea-
sured in decibels, between resynthesized speech and resynthesized
noise. More tailored for speech, Nakatani and Okuno (1999) calcu-
lates spectral distortion by comparing the short-term spectra of segre-
gated speech and those of clean speech. Bodden (1993) in his
binaural model of speech segregation estimates a time-varying
Wiener filter for each sound mixture, which consists of energy ratios
between the target speech and the mixture within critical bands.

ASR measure. A main motivation behind research on speech separa-
tion is to improve ASR performance in the presence of acoustic inter-
ference. So it is natural to evaluate a CASA model in terms of ASR
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score. This measure is used in the Weintraub model (1985) – proba-
bly the earliest CASA study. The evaluation metric is straightfor-
ward: Measuring changes in the recognition score using a standard
ASR system before and after sound mixtures are segregated by the
CASA model in question. Early ASR evaluations produce ambiguous
results, partly because processing stages in CASA tend to distort the
target signal, creating a mismatch between segregated signal and
clean signal used ASR training. More recent attempts have yielded
better outcomes (see, for example, Glotin, 2001).

Human listening. Human listeners can be involved in evaluating a
computational model in terms of speech intelligibility on original
mixtures and on segregated speech (1988; 1990). An improvement in
speech intelligibility would lend support to the value of the model.
However, human listeners are very good at segregating a sound mix-
ture, and this creates a potential confound for using listeners to test
model output. One practical difficulty is that in order to give room
for a model to improve on intelligibility, interference must be very
strong, which could be exceedingly hard for models to perform. Lis-
teners with hearing loss may be better suited for such evaluation as it
is well-known that people with sensorineural impairment have greater
difficulty in segregating target speech in a noisy environment (Moore,
1998).  Of course, if the objective of the model is to improve hearing
of abnormal listeners or that of normal listeners in highly noisy envi-
ronments, this evaluation methodology is the best choice. Ellis
(1996) made a different use of human listening in evaluation: His lis-
teners were used to score the resemblance of segregated sounds to
component sounds in the mixture.

Fit with biological data. Some CASA researchers are interested in
modeling the human ASA process, while some others are interested
in elucidating neurobiological mechanisms underlying ASA. For such
models, the main evaluation criterion is how well the models account
for known perceptual or neurobiological data. Wang (1996) sought to
model a number of ASA phenomena on the basis of a neural oscilla-
tor network (see also Norris, 2003). McCabe and Denham (1997) pro-
posed a different neural network that simulates psychophysical results
on auditory streaming. Recently, Wrigley and Brown (2004) put for-
ward a neural oscillator model of auditory attention and used it to
quantitatively simulate a set of psychological data.
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3 WHAT IS THE GOAL OF CASA?

Different evaluation criteria tend to reflect different goals of computa-
tional models, whether or not they are explicitly laid out. This raises the
question of what should be the goal of CASA? This is a very important ques-
tion since its answers bear directly on the research agenda and determine
whether computational efforts lead to real progress towards ultimately solving
the CASA problem.

To address this question, it might be helpful to put CASA in a broad con-
text of perception since CASA purports to model auditory scene analysis,
which is a major process of auditory perception. So a larger question is, what
is the goal of perception? This question, raised in the most general form,
would fall under the realm of philosophy, and indeed philosophers have
debated this issue for centuries. What we are concerned here is the informa-
tion processing perspective, which is shared by human and machine
perception. From this perspective, Gibson (1966) considers perceptual sys-
tems as ways of seeking and extracting information about the environment
from the sensory input. In the visual domain, Marr (1982) states that the pur-
pose of vision is to produce a visual description of the environment for the
viewer. By extrapolating Marr’s statement to the auditory domain, the pur-
pose of audition would be to produce an auditory description of the
environment for the listener. It is worth noting, according to the above views,
that perception is a process private to the perceiver despite the fact that the
physical environment is common to different perceivers.

According to Bregman (1990), the goal of ASA is to produce separate
auditory streams from sound mixtures, each stream corresponding to an
acoustic event. This would imply that the goal of CASA is to computationally
extract individual streams from sound mixtures. To make this description
more meaningful, however, further constraints need to be observed:

To qualify as a stream a sound must be audible on its own. In other
words, the intensity of the sound at the eardrum must exceed a certain
sound level, referred to as the absolute threshold (Moore, 2003).

The number of streams that can be segregated at a time must be lim-
ited. This limit is directly related to the capacity of auditory attention.
In a comprehensive account, Cowan recently concluded that the
capacity of attention is about four (Cowan, 2001). This implies that
the auditory system cannot segregate more than 4 streams simulta-
neously. While a listener may be able to segregate up to 4 tones or
steady vowels, in a very noisy environment such as a cocktail party,
the attentional capacity may reduce to figure-ground separation, i.e.
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attending to only a foreground stream with a general awareness of the
background.

A fundamental fact in auditory perception is auditory masking
(Moore, 2003). Roughly speaking, auditory masking refers to the
phenomenon that within a critical band a stronger signal tends to
mask a weaker one. When a sound is masked, it is eliminated from
perception as if the sound never reached the ear.

ASA results depend on sound types. Say we listen to mixtures of two
equally-loud sounds. If the sounds are two tones well separated in fre-
quency or two speech utterances, we can readily segregate them. On
the other hand, if the sounds are while noise and pink noise we are
completely incapable of any segregation.

With the above analysis in mind, we now discuss some alternative CASA
objectives. The first objective, which might be called the gold standard, is
simply to segregate all sound sources from a sound mixture. If this standard
could be reached, it would be the ideal goal of CASA, at least from an engi-
neering standpoint. On the other hand, the goal is clearly beyond what the
human listener can do; just observe for yourself how many conversations you
can follow in a cocktail party. It is probably also an unrealistic computational
goal if the system has just one or two microphones.

Another alternative objective is to enhance ASR. This objective has the
advantage that it directly relates to one of the primary motivations for CASA
research. The objective is also straightforward to evaluate as discussed in the
last section. This objective has several drawbacks. One drawback is that it is
narrowly focused on speech. Although speech is a vital type of acoustic signal
for humans, it is by no means the only important signal to us. What about
music, or other environmental sounds? For music in particular, it is hard to
characterize music perception as a recognition process. A deeper issue with
recognition as the goal is that perceiving is more than recognizing (Treisman,
1999).  Perceiving has, in addition of recognition, all the current details of
events, such as how they sound like, where they are, whether they are
approaching or receding, and many other details about them. Such details are
crucial for the perceiver to decide how to act. Also it is not clear how the
ASR objective can account for the fact that new things unheard before can be
perceived as well.

The third alternative is to enhance human listening. A main advantage of
this objective is the close coupling with auditory perception. Also a primary
motivation of studying CASA is to improve hearing prosthesis for listeners
with hearing impairment as well as hearing of normal listeners in very noisy
environments. However, this objective is specifically tailored to human lis-
tening and there are other applications that do not directly involve humans,
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such as audio information retrieval. There are also practical difficulties for
computational researchers in terms of required expertise for conducting
human experiments.

These alternative objectives have their advantages and disadvantages. A
desirable objective should be generally consistent with the above analysis on
human auditory scene analysis, and be comprehensive enough to apply to dif-
ferent types of acoustic signal and different application domains. The
objective should not consider just recognition performance or human listen-
ing, but at the same time it should be consistent with such criteria. The
simplicity of the objective and easiness to apply are also desirable so that a
researcher need not wait for a long time to find out how well a provisional
model works. In the next section, I present the ideal time-frequency mask as
a putative goal of CASA.

4 IDEAL BINARY MASK AS THE GOAL OF CASA

As discussed in Section 3, the gold-standard objective is probably unreal-
istic. A more realistic objective is to segregate a target signal from the
mixture. Then the objective becomes that of figure-ground separation. This
begs the question of what should be regarded as the target? Generally speak-
ing, what the target is depends on external input as well as intention; it is
closely related to the study of attention, in particular what attracts attention
(Pashler, 1998). From a practical standpoint, what constitutes the target is
task-dependent and often unambiguous. For the purpose of our discussion,
we assume that the target is known. We also assume, for the sake of evalua-
tion, the availability of premixing target signal and interference.

A widely accepted representation in CASA is the two-dimensional time-
frequency representation where the time dimension consists of a sequence of
time frames and the frequency dimension consists of a bank of auditory filters
(e.g. gammatone filters). This representation is consistent with accounts of
human ASA and auditory physiology. Within this representation, the key
consideration behind the notion of the ideal binary mask is to retain the time-
frequency regions of a target sound that are stronger than the interference, and
discard the regions that are weaker than the interference. More specifically,
an ideal mask is a binary matrix, where 1 indicates that the target energy is
stronger than the interference energy within the corresponding T-F unit and 0
indicates otherwise. This definition implies a 0-dB SNR criterion for mask
generation, and other SNR criteria are possible too (see below). Figure 12.1
illustrates the ideal mask for a mixture of a male utterance and a female utter-
ance, where the male utterance is regarded as target. The overall SNR of the
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Figure 12.1. Illustration of the ideal binary mask. Top left: Two-dimensional T-F representa-
tion of the target utterance (“Primitive tribes have an upbeat attitude”). The figure displays the
rectified responses of the gammatone filterbank with 128 channels. Top right: Corresponding
representation of the interfering utterance (“Only the best players enjoy popularity”). Middle
left: Corresponding representation of the mixture. Middle right: Ideal T-F binary mask, where
white pixels indicate 1 and black pixels 0. Bottom left: Masked mixture using the ideal binary
mask.

mixture is 0 dB. The top left panel of Figure 12.1 shows the T-F representa-
tion of the target utterance, the top right panel the representation of the
interfering utterance, and the middle left panel the representation of the mix-
ture. For this mixture, the ideal mask is shown in the middle right panel. The
bottom left panel of the figure shows the result of ideal masking on the mix-
ture. Compared with the original mixture, the masked mixture is much closer
to the clean target. Listening to the masked mixture one can clearly hear the
target utterance while no trace of interference is audible.

Binary masks have been used as an output representation in the CASA lit-
erature (Brown and Cooke, 1994; Wang and Brown, 1999). Related to binary
masks is the observation that different speech utterances tend to be orthogonal
in a high-resolution time-frequency representation because the energy of a
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single utterance tends to be sparsely distributed (Jourjine et al., 2000; Roweis,
2001). This observation obviously does not hold when an acoustic back-
ground is babble noise or contains broadband intrusions. To my knowledge,
the papers of Hu and Wang (2001) and Roman et al. (2001) are the earliest
studies that suggest the use of the ideal binary mask (see also Roman et al.,
2003; Hu and Wang, 2004). Note that the definition of the ideal binary mask
does not assume orthogonality among sound sources.

The ideal binary mask has a number of desirable properties:

Flexibility. With the same mixture, the definition leads to different
masks depending on what the target is. It is consistent with the per-
ceptual observation that the same environment can be perceived in
different ways by different perceivers.

Well-definedness. The ideal mask is well defined no matter how
many intrusions are in the scene. One may also identify multiple tar-
gets from the same mixture, with multiple processors that have differ-
ent target definitions.

The ideal binary mask sets the ceiling performance for all binary
masks.

The ideal mask is broadly consistent with ASA constraints in terms of
audibility and segregation capacity. In particular, it has direct corre-
spondence with the auditory masking phenomenon

When a gammatone filterbank is used for generating the time-frequency
representation, a technique introduced by Weintraub (1985) can be used to
resynthesize a waveform signal from a binary mask (see also Brown and
Cooke, 1994; Wang and Brown, 1999). One can then conduct listening tests
on resynthesized signal. The ideal binary mask produces high quality resyn-
thesized target unless the mixture SNR is very low.

Recent research on missing-data speech recognition provides an effective
bridge between a segregated mask and ASR (Cooke et al., 2001). The main
idea of missing-data recognition is to adapt the standard HMM recognizer so
that recognition decisions are based only on reliable T-F units while marginal-
izing unreliable or missing T-F units. Cooke et al. (2001) found that the a
priori mask – defined according to whether the mixture energy is within 3 dB
of the target energy – used in conjunction missing-data recognition yields
excellent recognition performance. Similar performance is obtained by
Roman et al. (2003) using the ideal binary mask. Moreover, the study of
Roman et al. (2003) found that deviations from the ideal binary mask lead to
gradual degradation in speech recognition performance.
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The ideal binary mask has been recently tested in human speech intelligi-
bility experiments. As noted earlier, the definition of the ideal mask uses the
0-dB SNR criterion within individual T-F units. However, one can produce
different ideal masks using different local SNR criteria. Brungart et al. (in
preparation) tested a range of local SNR criteria around 0 dB using ideal
masking on speech mixtures involving one target talker and 1 to 3 competing
talkers. All talkers have equal overall loudness, or the SNR between the tar-
get and a single competing talker is zero. Their experiments showed that,
within the local SNR range from -5 dB to 5 dB, ideal masking produces intel-
ligibility scores near 100% in all mixtures involving 2, 3, and 4 talkers. In
addition, the intelligibility score decreases systematically towards higher or
lower SNR criteria. Note that for a fixed mixture a very high SNR criterion
leads to a mask with very few 1’s, hence very little target energy; a very low
SNR criterion leads to a mask close to an all-1 mask, hence very little segre-
gation. Their results also show that, for mixtures with very low SNR, ideal
masking improve speech intelligibility dramatically (see also Roman et al.,
2001).

Finally an analogy may be drawn between auditory binary masking and
visual occlusion. Figure 12.2 illustrates occlusion with a natural image of
water lilies, where a lily in the front occludes the objects in the back. Visual
occlusion may be considered as an instance of binary masking, in which the
pixels of a front surface are assgined 1 in the mask and those of the occluded
surfaces are assigned 0. Moreover, when an observer attends to a particular
object in an image (say the lily near the center of Figure 12.2), this process of
attending is analogous to ideal binary masking where the pixels of the
attended object correspond to 1’s in the mask and the remaining pixels corre-
spond to 0’s.

Figure 12.2. A natural image of water lilies.
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ESTIMATION OF THE IDEAL BINARY MASK5

The ideal binary mask clearly quantifies the computational goal of CASA.
Guided by this goal, we have made conscious effort to compute the ideal
mask. This section describes two models that explicitly estimate the ideal
binary mask.

5.1 Monaural segregation of voiced speech

Voiced speech segregation has been a primary topic in CASA. For voiced
speech, harmonicity is the essential cue for segregation. Earlier CASA models
can segregate much of the low-frequency energy, but have trouble segregating
high-frequency components. It is well-known that the auditory system can
resolve the first few harmonics, while higher harmonics are unresolved. Psy-
choacoustic research suggests that the auditory system may use different
mechanisms to deal with resolved and unresolved harmonics (Carlyon and
Shackleton, 1994; Bird and Darwin, 1997). Subsequently, Hu and Wang
(2003; 2004) developed a CASA model that employs different mechanisms in
the low- and the high-frequency range. The model follows the general two-
stage processing (see Section 1): Segmentation and grouping. Building on the
output from the Wang-Brown model (1999) that works well in the low-fre-
quency range, Hu and Wang proposed a psychoacoustically motivated
method for tracking target pitch contours.

With the results of target pitch tracking, the model then labels individual
T-F units. In the low-frequency range, a T-F unit is labeled by comparing its
response periodicity and the extracted target pitch period. In the high-fre-
quency range, wide bandwidths of auditory filters cause the filters to respond
to multiple unresolved harmonics of voiced speech. These responses are
amplitude modulated due to beats and combinational tones (Helmholtz,
1863). Furthermore, response envelopes fluctuate at the frequency that corre-
sponds to the fundamental frequency of speech. Hence, the model labels a
high-frequency unit by comparing its amplitude modulation (AM) rate with
the extracted pitch frequency. To derive AM rates Hu and Wang have
employed a sinusoidal modeling technique; specifically, a single sinusoid is
used to model AM within a certain range of target pitch and the derivation of
AM rates can then be formulated as an optimization problem. With appropri-
ately chosen initial values, the optimization problem can be solved efficiently
using an iterative gradient descent technique. With labeled T-F units, the
model generates segments in the low-frequency range based on temporal con-
tinuity and cross-channel correlation between responses of adjacent frequency
channels, and in the high-frequency range based on temporal continuity and
common AM among adjacent filter responses. Segments thus formed then
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expand iteratively, and the resulting collection of the segments with the target
label gives the segregated target which is represented by a binary T-F mask.

Figure 12.3 illustrates the result of ideal mask estimation for voiced
speech segregation. The top left panel of the figure shows the T-F representa-
tion of a voiced utterance which is the target. The top right panel shows the
mixture of the utterance with a ‘cocktail party’ noise from Cooke (1993). The
middle left panel shows the ideal binary mask for the mixture, and the middle
right panel the estimated mask. The estimated mask is reasonably close to the
ideal one. The bottom left panel gives the result of ideal masking on the mix-
ture, and the bottom right panel the result of masking using the estimated
mask.

The model of Hu and Wang (2004) produces substantially better perfor-
mance than previous models, especially in the high-frequency range. In terms
of systematic SNR evaluation, one may treat the resynthesized signal from the
ideal binary mask as signal because the ideal mask represents the

Figure 12.3. Ideal mask estimation for monaural speech segregation. Top left: T-F representa-
tion of the target utterance (“Why were you all weary”). Top right: T-F representation of the
mixture of the target and the cocktail party noise. Middle left: Ideal binary mask for the mix-
ture. Middle right: Estimated binary mask for the mixture. Bottom left: Masked mixture
using the ideal mask. Bottom right: Masked mixture using the estimated mask.
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computational goal. The model then yields 5.2 dB improvement over the
Wang and Brown model (1999), which had the representative performance of
earlier CASA systems. It also has 6.4 dB gain over the standard spectral sub-
traction method in speech enhancement. Similar improvements are obtained
with conventional SNR metric using premixing speech as signal.

5.2 Binaural speech segregation

It is well known that people can selectively attend to a single voice at a
noisy cocktail party. Spatial location is believed to play an important role in
cocktail party processing. How to simulate this perceptual ability, known as
the cocktail-party problem (Cherry, 1953), is a great computational challenge.

Guided by the notion of the ideal binary mask, Roman et al. (2003) devel-
oped a new location-based approach to speech segregation. Their model uses
the binaural cues of interaural time difference (ITD) and interaural intensity
difference (IID) extracted from a KEMAR dummy head that realistically sim-
ulates the filtering process of the head, torso and external ear. They observe
that, within a narrow frequency band, modifications to the relative energy of
the target source to the interfering energy trigger systematic changes in the
values of the binaural cues. For a given spatial configuration, this interaction
produces characteristic clustering in the binaural feature space. Consequently,
the model performs independent supervised learning for different spatial con-
figurations and different frequency bands in the joint ITD-IID feature space.
More specifically, they formulate the estimation of the ideal binary mask as a
binary Bayesian classification problem, where the hypothesis is whether the
target is stronger than the overall interference within a single T-F unit. Then a
nonparametric method (kernel density estimation) is used to estimate likeli-
hood functions in the ITD-IID space, which are then used in maximum a
posteriori (MAP) decision making.

Figure 12.4 illustrates the result of estimating the ideal binary mask for
natural speech segregation, using the same mixture shown in Figure 12.1.
The top right panel shows the ideal binary mask, and the bottom right panel
the estimated mask. The match between the two masks is excellent. Finally,
the bottom left panel displays the result of masking the mixture using the esti-
mated mask (cf. bottom left panel of Figure 12.1).

The resulting model was systematically evaluated in two-source and three-
source configurations, and estimated binary masks approximate the ideal ones
extremely well. In terms of conventional SNR evaluation, the model pro-
duces large and consistent SNR improvements over original mixtures. The
SNR gains are as large as 13.8 dB in the two-source case and 11.3 dB in the
three-source case. A comparison with the Bodden model (1993), which esti-
mates a Wiener filter, shows that the Roman et al. model produces 3.5 dB
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Figure 12.4.  Ideal mask estimation for binaural speech segregation. Top left: the same mixture
shown in Figure 12.1. Top right: Ideal binary mask for the mixture (also shown in Figure
12.1). Bottom right: Estimated binary mask. Bottom left: Masked mixture using the estimated
mask.

improvement in the most favorable conditions for the Bodden model, and in
other conditions the improvement is significantly greater. In addition to SNR
evaluation, they performed an ASR evaluation by feeding estimated binary
masks to a missing-data recognizer (Cooke et al., 2001), and the model yields
large ASR improvements compared to direct recognition of mixtures. Also,
the model was evaluated on speech intelligibility with human listeners.
Because people excel at ASA and achieve near perfect intelligibility unless
interference is severe, the tests used three low SNR levels: 0 dB, -5 dB and -
10 dB (measured at the better ear). The general finding is that the algorithm
improves human intelligibility for the tested conditions, and the improvement
becomes larger as the SNR decreases – as large as an increase from an intelli-
gibility score of 20% to 80% at -10 dB.

6 CONCLUSION

In his famous treatise of computational vision, Marr (1982) makes a com-
pelling argument for separating different levels of analysis in order to
understand complex information processing. In particular, the computational
theory level, concerned with the goal of computation and general processing
strategy, must be separated from the algorithm level, or the separation of what
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from how. This chapter is an attempt at a computational-theory analysis of
auditory scene analysis, where the main task is to understand the character of
the CASA problem.

My analysis results in the proposal of the ideal binary mask as a main goal
of CASA. This goal is consistent with characteristics of human auditory scene
analysis. The goal is also consistent with more specific objectives such as
enhancing ASR and speech intelligibility. The resulting evaluation metric has
the properties of simplicity and generality, and is easy to apply when the pre-
mixing target is available. The goal of the ideal binary mask has led to
effective for speech separation algorithms that attempt to explicitly estimate
such masks.
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The History and Future of CASA

Malcolm Slaney
IBM Almaden Research Center
malcolm@ieee.org

1 INTRODUCTION

In this chapter I briefly review the history and the future of computational
auditory scene analysis (CASA). Auditory scene analysis describes the pro-
cess we use to understand the world around us. Our two ears hear a cacophony
of sounds and understand that the periodic tic-toc comes from a clock, the
singing voice comes from a radio and the steady hum is coming from the
refrigerator.

The field of computational auditory scene analysis crystallized with the
publication of Al Bregman’s book “Auditory Scene Analysis” (1990). The
commonly understood goal is to listen to a cacophony of sounds and separate
the sounds from the mixture, just as humans do. I argue that this is not what
people do. In this review, I will describe some progress to date towards mod-
eling human sound separation, and review why this is the wrong direction for
those of us interested in modeling human perception. Instead, we should be
thinking about sound understanding. Auditory scene analysis and sound
understanding are inextricably linked. Sound understanding is clearly a much
harder problem, but should provide a better model of human sound separation
abilities.

In particular, this chapter makes two related points. 1) We need to consider
a richer model of sound processing in the brain, and 2) human sound separa-
tion work should not strive to generate acoustic waveforms of the separated
signals. Towards this goal, this paper reviews the use of a correlogram for
modeling perception and understanding sounds, the success at inverting the
correlogram representation and turning it back into sound, and then summa-
rizes recent work that questions the ability of humans to isolate separate
representations of each sound object.
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Figure 13.1.Simulated auditory nerve firings for the sound “Re”. The vertical axis is arranged
tonotopically, while time flows horizontally from left to right.

2 AUDITORY MODELING

This section reviews three aspects of auditory modeling: the cochleagram,
the correlogram, and their inversion to recover the original sound. This inver-
sion process is interesting, not only because it demonstrates the fidelity of the
representation, but also because many sound-separation systems perform their
separation in one of these two domains and then want to demonstrate their
performance by resynthesizing the cleaned-up sound.

2.1 The Cochleagram

The cochlea transcribes the sounds into a stream of neural firings carried
by the auditory nerve. These neural firings are often arranged in order of each
nerve’s best frequency to form a cochleagram. The richness of the cochlear
data is shown in Figure 13.1. All sound that is perceived travels along the
auditory nerve, so it is a complete representation of the perceived sound.

Figure 13.1 shows the output of a cochlear model for the sound “Re.” Hor-
izontal bands are at positions along the basilar membrane where there is
significant spectral energy and correspond to the formants that are used to
describe speech signals. More interestingly, there is a volley of firings at a
regular interval represented by the (slanted) vertical lines. These periodic fir-
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ings correspond to the energy imparted into the signal by the glottis and their
interval directly corresponds to the glottal pitch.

2.2 The Correlogram

The richness and redundancy of the cochleagram suggests the need for an
intermediate representation known as the correlogram. The correlogram was
first proposed as a model of auditory perception by James Licklider (1951).
His goal was to provide a unified model of pitch perception, but the correlo-
gram was also been widely used as a model for the extraction and
representation of temporal structure in sound.

The correlogram summarizes the information in the auditory firings using
the auto-correlation of each cochlear channel (a channel, in this work, is
defined as the firing probabilities of auditory nerves that innervate any one
portion of the basilar membrane.) Its goal is collapse and summarize the
repetitive temporal patterns shown in Figure 13.1.

The correlogram has met with great success in a number of areas. Meddis
and his colleagues (Meddis and Hewitt 1991, Slaney and Lyon, 1990) have
demonstrated the ability of a correlogram to model human pitch perception.
Assman and Summerfield (1990) and others have shown that the correlogram
is a useful representation when modeling the ability of humans to perceive
two simultaneous spoken vowels. If anything, models using an ideal correlo-
gram as their internal representations perform even better than humans.

The correlogram has served as a compelling visualization tool. In one
auditory example created by Steve McAdams and Roger Reynolds, an oboe is
split into even and odd harmonics. When the even and odd harmonics are
played together at their original frequencies it sounds like the original oboe.
But then independent frequency modulation (vibrato) is added to the even and
the odd harmonics. The oboe separates into two sounds. The odd harmonics
sound like a clarinet because a clarinet has mostly odd harmonic content,
while the even harmonics go up an octave in pitch and sound like a soprano. A
correlogram of this sound is quite striking: two sets of gray dots seem to float
independently on the screen. Our task is simply a matter of identifying the
dots with the common motion—using whatever tools make sense from a per-
ceptual point of view—synthesizing two partial correlograms, and then
resynthesizing the original sound.

2.3 Auditory Inversion

Given the grouping of the sound energy, a sound is synthesized from the
selected neural representation, to allow human ears (and funding agencies)
hear the separated sounds. Towards this goal, a number of us spent years
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Figure 13.2. The correlogram inversion process. From waveform to correlogram and back.

developing the algorithms that allow us to turn a correlogram movie back into
sound (Slaney 1996). The process requires two steps, as shown in Figure 13.2:
1) cochleagram inversion and 2) correlogram inversion.

From the cochlear representation (the information available on the audi-
tory nerve, or a cochleagram) we invert the loudness compression (undo the
automatic gain control in Lyon’s model) run the auditory nerve probabilities
backwards through the auditory filters, sum the backwards outputs into a sin-
gle time-domain signal, and then repeat. This procedure, using an idealized
cochlear model such as the one produced by Lyon can be done without per-
ceptual differences between the original sound and the sound inversion from
the cochleagram.

This procedure was used by Weintraub (1986) in the first real CASA sys-
tem. He used the correlogram to track the pitch of two different sounds. Each
channel was assigned to one sound object or the other, depending on which
speaker’s pitch was dominant. Then those cochleagram channels from each
speaker were grouped, turned back into sound and applied to a speech recog-
nizer. He realized a small improvement in speech recognition performance in
a digit identification task.

The second, and more difficult problem, is inverting the correlogram to
produce the original cochleagram. The important insight is to realize that each
row of the correlogram is a time-varying autocorrelation. An autocorrelation
contains the same information as the power spectrum (via an FFT) so each
row of the correlogram can be converted into a spectrogram. Spectrogram
inversion can be accomplished with an iterative procedure—find the time-
domain waveform that has the same spectrogram as the original spectrogram.
There is a bit more involved in getting the phase from each cochlear channel
to line up, but the result is a sound that sounds pretty close to the original. The
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inversion problem was solved. This also demonstrates that the correlogram
representation is a complete model—little information is lost since the sound
from the correlogram is so similar to the original.

3 GROUPING CUES

How does the perceptual system understand an auditory scene? Research-
ers often think about a number of cues that allow the brain to group pieces of
sound that are related (Bregman 1990). But this outlook is inherently a bot-
tom-up approach—only cues in the signal are used to perform grouping.
There are other cues that come from a person’s experiences, expectations, and
general knowledge about sound. This chapter argues that both sets of cues are
important for scene analysis. First it is useful to review a range of low-level
and high-level grouping cues.

3.1 Low-Level Grouping Cues

Many cues are used by the auditory system to understand an auditory
scene. The most important grouping principle is common fate. Portions of the
sound landscape that share a common fate—whether they start in synchrony
or move in a parallel fashion—probably originate from the same (physical)
object. Thus the auditory system is well served by grouping sounds that have
a common fate.

There are many cues that suggest a common fate. The most important ones
are common onsets and common harmonicity. Common onsets are important
because many sounds start from a common event and all the spectral compo-
nents are stimulated at the same time. Common harmonicity is important
because periodic sounds—sounds that repeat at a rate between 60 and
5000Hz—have many spectral harmonics that vary in frequency and amplitude
in a synchronous fashion. These and other similar cues are well described in
Bregman’s book.

A different style of low-level cues have been exploited for sound separa-
tion by the machine-learning community (Lee et al., 1997). Known as blind-
source separation (BSS), these systems generally assume there are N distinct
sources that are linearly mixed and received by N microphones. Portions of a
signal from the same source are highly correlated and thus should be grouped.
BSS relies on the statistical independence of different sources. It forces sig-
nals apart that do not share a common fate.

A further refinement is possible in the case of one-microphone source sep-
aration (Roweis 2003). The original BSS problem remains—find statistically
independent sources that sum to the received signals. One-microphone source
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separation assumes that for any one position in the spectral-temporal plane,
only one speaker at a time is present. The problems becomes a matter of allo-
cating the portions of the received signal so that each source is not only
independent, but fits a model of speech. One-microphone source separation
uses a model of the speaker, encoded as a vector-quantization model in
Roweis’ work, to guide the separation.

3.2 High-Level Grouping Cues

Many types of auditory scene analysis can not be done using simple low-
level perceptual cues. Listeners bring a large body of experiences, expecta-
tions, and auditory biases to their auditory scene analysis. If somebody says
“firetr...” then the only real question is whether I’m hearing the singular or the
plural of firetruck, and even that information can be inferred from the verb
that follows. Yet, we perceive we’ve heard the entire word if there is suffi-
cient evidence (more about this in Section 4.3).

Consider an auditory example I presented at a workshop in Montreal. A
long sentence was played to the audience. During the middle of the word “leg-
islature,” a section of the speech was removed and replaced by a cough. Most
people could not recall when the cough occurred. The cough and the entire
speech signal were perceived by listeners that understood the English lan-
guage as independent auditory objects. But one non-native speaker of English
did not know the word “legislature” and thus heard the word “legi-cough-
ture.” His limited ability to understand English gave his auditory system little
reason to predict that the word “legislature” was going to come next. This is
an example of phonetic restoration (Warren 1970).

A paper titled “A critique of pure audition” (Slaney and Lyon, 1990) talks
about a number of other examples where high-level cues can drive auditory
scene analysis. These clues include:

Grouping—Think about a collection of whistles. Would these isolated
tones ever be heard as speech? In sine-wave speech three time-varying tone
are heard as speech (Remez et al., 1984)

Grouping—A click in an African click language is heard as speech during
a spoken utterance, but listeners unfamiliar with that language hear the clicks
as instrumental percussion during a song.

Vision affects audition—In the McGurk effect, a subject’s visual percep-
tion of the speaker’s lips affects their auditory perception. (See Figure 13.3.)

Audition affects vision—In a simple apparent-motion demonstration,
audio clues can cause motion perception in a simple visual display.

Categorical perception—A particular speech waveform is heard as two
different vowels depending on the acoustic environment of the preceding sen-
tence (Lagefoged 1989)



Chapter 13: The history and future of CASA 205

Figure 13.3. The McGurk effect. The same auditory stimulus is heard differently when accom-
panied by video.

In each of these cases, a listener’s experience or a completely different
input modality affect the sounds we hear. This high-level knowledge is clearly
guiding the scene analysis decisions.

3.3 Which is it? Top-down versus bottom-up

Evidence of the tangled web of perception was described in a paper titled
“A Critique of Pure Audition” (Slaney 1996). This paper suggests a number
of other effects which call into question a purely bottom-up approach. In the
most common cases, simple cues such as common harmonicity causes group-
ing and we understand the speech. Yet in other cases, speech experience rules
the day (i.e. phonetic restoration).

These convoluted connections suggest that sound analysis does not pro-
ceed in a purely bottom up fashion. More importantly, how is each sound
object represented? With high-level expectations and cross-modality input, it
seems difficult to believe that each sound object is represented by a neural
spike train corresponding to a real (or hallucinated) auditory waveform.
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Figure 13.4. The auditory bottom-up grouping process.

4 SOUND SEPARATION MODELS

Researchers use models to concisely describe the behavior of a system. In
this section I would like to summarize models that have taken a bottom-up or
a top-down view of the world.

Most of the sound separation models to date have evaluated their results
based on either the quality of the reconstructions, or the performance of a
speech-recognition system on the separate stream outputs. Both approaches
largely answer an engineering question: Can we produce a useful auditory
scene analysis and improve speech recognition.

The double-vowel perception experiments (e.g. Assman and Summerfield,
1990) are a good example of models that attempt to match the human perfor-
mance data.

4.1 Bottom-Up Models

Much of the original work on scene analysis used a bottom-up approach
that was well articulated by David Marr (1982). In Marr’s approach simple
elements of a scene (either auditory or visual) are grouped first into simple
(2D) cartoons, then more sophisticated processing is applied in steps to create
a complete understanding of the object (See Figure 13.4). In this model, the
brain performs sound separation and object formation, based on all available
clues, before performing sound identification.

The first of the bottom-up models for auditory scene analysis was created
by Mitch Weintraub (1986), then a Ph.D. student at Stanford University. In



Chapter 13: The history and future of CASA 207

Weintraub’s work, a correlogram is used to analyze the pitches of two speak-
ers (one male and the other female). The pitches were tracked, thus finding
the dominant periodicity for each speaker. Then those (spectral) channels
from the original cochleagram with the correct periodicity are inverted to
recover an estimate of the original speech signal. His goal was to improve
speech digit recognition.

In the 1990’s a number of researchers built more sophisticated system to
look for more cues and decipher more complicated auditory streams. Cooke
and Ellis (2001) wrote an excellent summary of the progress to date using cor-
relograms and related approaches to separate sounds. The essential goal is to
identify energy in the signal which shares a common fate, group this energy
together, and then resynthesize. Common fate identifies sounds which proba-
bly came from the same source, often because the energy in different portions
of the signal shares a common pitch, or a common onset.

4.2 Top-Down Models

The bottom-up models use information from the sound to group compo-
nents and understand an auditory scene. Except for information such as the
importance of pitch or onsets, there is little high-level knowledge to guide the
scene-analysis process. On the other hand, there is much that language and
our expectations tell us about a sound.

Perhaps the best example of a top-down auditory-understanding system is
a hidden-Markov model (HMM) based speech-recognition system. In an
HMM speech-recognition system, a probabilistic framework is built that cal-
culates the likelihood of any given sequence of words given the acoustic
observations. This likelihood calculation is based on low-level acoustic fea-
tures, often based on an acoustic model known as MFCC (Quatieri 2002), but
most of the power in the approach is provided by the language constraints.

The complexity of a speech-recognition system’s language model is often
described by its perplexity, or the average number of words that can follow
any other word. Smaller perplexity means that fewer words can follow, the
language is more constrained, and the recognizer’s job is easier. In a radiolog-
ical task, the words are specialized and the perplexity is 20, while in general
english the perplexity is 247 (Cole et al., 1996). One of the first commercially
successful applications of automatic-speech recognition was for medical tran-
scription, where a relatively small amount of high-level knowledge could be
encoded as a low-perplexity grammar.

The complexity of the language model directly affects the performance of
a speech-recognition system. In the simplest example, once the sounds for
“firetr” are confidently heard, then the speech recognition system is likely to
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recognize the utterance as “firetruck” regardless of what sounds are heard
next.

An even more constrained example is provided by the score-following or
music-recognition systems (Pardo and Birmingham, 2002). In this case, the
system knows what notes are coming and only needs to figure out when they
are played. The complexity of a musical signals means that this task can only
be accomplished with a very narrow, high-level constraint.

4.3 Mixtures

In practice neither model, top-down or bottom-up, can explain the ability
of human listeners to analyze an auditory scene. Clearly low-level cues prime
the sound-analysis process—we generally do not hallucinate our entire world.
These low-level cues are important, but do not explain simple auditory effects
such as phonetic restoration.

Our brains have an amazing ability to hear what might or might not be
present in the sound. Consider a slowly rising tone that is interrupted by a
short burst of loud noise. As long as the noise burst is loud enough, we per-
ceive a continuous tone that extends through the noise burst, whether the tone
is actually present or not. Our brains hear a continuous tone as long as there is
evidence (i.e. enough auditory nerve spikes at the correct cochlear channels)
that is consistent with the original hypothesis (the tone is present).

This simple demonstration calls into question the location of the halluci-
nated tone percept. A purely low-level bottom-up model suggests that some
portion of the brain has separated out a set of neural spikes that correspond to
the phantom tone. The auditory system sees the same set of spikes, with or
without the noise burst, and perceives a continuous tone. Instead it seems
more likely that somewhere a set of neurons is saying “I hear a tone” and
these neurons continue to fire, even when the evidence is weak or non-exis-
tent. In other words, object formation is guiding the object segmentation
process.

At this point it should be clear that a wealth of information flows up into
the brain from the periphery, and a large body of the listener’s experience and
expectations affect how we understand sound. In the middle information and
expectations collide in a system that few have tackled. Grossberg’s work
(2003) is a notable exception.

The more interesting question, at least for somebody that spent a lot of
time developing auditory-inversion ideas, is whether the brain ever assembles
a high-fidelity neural coding that represents the pure auditory object. The pho-
netic restoration illusion only works when the noise signal is loud enough so
that the missing speech sound could be masked by noise. In other words, the
brain is willing to believe the entire word is present as long as it does not vio-
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late the perceptual evidence. This is clearly expectation driven, top-down
processing. But does the brain represent this missing information as a com-
plete representation of the auditory signal, or use a high-level token to
represent the final conclusion (I heard the word “legislature”)?

5 CONCLUSIONS

The purely bottom-up approach to auditory perception is clearly inconsis-
tent with the wealth of evidence suggesting that the neural topology involved
in sound understanding is more convoluted. One can build a system that sepa-
rates sounds based on their cochleagram or correlogram representations, but
this appears inconsistent with the functional connections. Instead, our brains
seem to abstract sounds, and solve the auditory scene analysis problem using
high-level representations of each sound object.

There has been work that addresses some of these problems, but it is solv-
ing an engineering problem (how do we separate sounds) instead of building a
model of human perception. One such solution is proposed by Barker and his
colleagues (2001) and combines a low-level perceptual model with a top-
down statistical language model. This is a promising direction for solving the
engineering problem (how do we improve speech recognition in the face of
noise) but nobody has evaluated the suitability of modeling human-language
perception with a hidden-Markov model.

A bigger problem is understanding at which stage acoustic restoration is
performed. It seems unlikely that the brain reconstructs the full acoustic
waveform before performing sound recognition. Instead it seems more likely
that the sound understanding and sound separation occur in concert and the
brain only understands the concepts. Later, upon introspection the full word
can be imagined.

Much remains to be done to understand how humans perform sound sepa-
ration, and to understand where CASA researchers should go. But clearly
systems that combine low-level and high-level cues are important.
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1 INTRODUCTION

Although much research effort has been expended on the development of
automatic speech recognition (ASR) systems, their performance still remains
far from that of human listeners. In particular, human speech perception is
robust when speech is corrupted by noise or by other environmental interfer-
ence, such as reverberation (for example, see Assmann and Summerfield,
2003). In contrast, ASR performance falls dramatically in such conditions
(Lippmann, 1997). As several researchers have observed (e.g., Hermansky,
1998), the current limitations of ASR systems might reflect our limited under-
standing of human speech perception, and especially our inadequate
technological replication of the underlying processes.

The robustness of human speech perception can be attributed to two main
factors. First, listeners are able to segregate complex acoustic mixtures in
order to extract a description of a target sound source (such as the voice of a
speaker). Bregman (1990) describes this process as ‘auditory scene analysis’.
Secondly, human speech perception is robust even when speech is partly
masked by noise, or when parts of the acoustic spectrum are removed alto-
gether. Cooke et al. (2001) have interpreted this ability in terms of a ‘missing
data’ model of speech recognition, and have adapted a hidden Markov model
(HMM) classifier to deal with missing or unreliable features. In their system,
a time-frequency ‘mask’ is employed to indicate whether acoustic features are
reliable or corrupted; according to this division, the features are treated differ-
ently by the recogniser. Typically, the missing data mask is derived from
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auditory-motivated processing, such as pitch analysis (e.g., Barker et al.,
2001; Brown et al., 2001). Alternatively, the mask can be set according to
local estimates of the signal-to-noise ratio (SNR) (Barker et al., 2001; Cooke
et al., 2001).

This article reviews two studies that estimate a missing data mask for ASR
under two acoustic conditions; recognition of speech in the presence of heavy
reverberation, and recognition of speech in the presence of mild reverberation
and another competing voice. The reader is referred to the two papers con-
cerned (Palomäki et al., 2004a; Palomäki et al., 2004b) for full details.

2 THE MISSING DATA APPROACH TO AUTO-
MATIC SPEECH RECOGNITION

The speech recogniser used in both studies employs the missing data tech-
nique (Cooke et al., 2001), in which a hidden Markov model (HMM) system
is adapted to deal with missing or unreliable data. The classification problem
in speech recognition involves the assignment of an acoustic vector Y to a
class W, such that the posterior probability  is maximised. However,
when a noise intrusion is present or when the speech is corrupted by environ-
mental conditions such as reverberation, some components of Y are likely to
be unreliable or missing. In these cases, the acoustic model cannot be
computed as usual. The ‘missing data’ technique addresses this problem by
partitioning Y into reliable and unreliable components, and

In the simplest approach, the unreliable components are simply ignored, so
that classification is based on the marginal distribution However,
when Y is an acoustic vector it is usually known that the uncertain compo-
nents have bounded values, and this information can be exploited during
classification using the so-called ‘bounded marginalisation’ method (Cooke et
al., 2001). Here, we use bounded marginalisation in which Y is an estimate of
auditory nerve firing rate, so the lower bound for is zero and the upper
bound is the observed firing rate. In practice, the recogniser is provided with a
binary mask, which represents the time-frequency distribution of reliable and
unreliable components.



Chapter 14: Robust Speech Recognition 215

Figure 14.1. A. Rate map computed for the male utterance ‘five seven four three two five
one’ recorded in anechoic conditions. Energy is mapped to gray level: the most energetic
regions are darkest. B. The same utterance shown in panel A, but with added reverberation
(T60=1.2 sec.). C. The a priori mask computed for the rate map in panel B. Black areas in the
mask correspond to reliable speech regions, white areas correspond to reverberation contami-
nated regions. D. Mask computed for the rate map in panel B by a reverberation masking
algorithm.

3 MASK ESTIMATION FOR REVERBERANT
CONDITIONS

In this approach, modulation filtering is used to identify speech features
that are least contaminated by reverberation, and hence to derive a ‘reverbera-
tion mask’ for missing data ASR using spectral features.

The envelope of each channel in an auditory model is processed with a
finite impulse response (FIR) filter consisting of a linear phase lowpass com-
ponent and a differentiator. The filter has a pass band (indexed by 3 dB
points) between 1.5 Hz and 8.2 Hz. The aim of this filtering scheme is to
detect regions of reverberated speech in which direct sound and early reflec-
tions dominate, and to mask the areas that contain strong late reverberation.
The role of the lowpass component is to detect and smooth modulations in the
speech range, whereas the differentiator emphasizes abrupt onsets, which are
likely to correspond to direct sound and early reflections.

Subsequently, a threshold is applied to the modulation-filtered rate map in
order to produce a binary mask for the missing data speech recogniser. The
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value of the threshold should depend on the degree to which the speech is
reverberated. In our previous work the threshold was hand-tuned to each
reverberation condition (Palomäki et al., 2002), but more recently we have
developed a technique for estimating its value directly from an utterance (Pal-
omäki et al., 2004b). Specifically, the threshold is set according to a simple
‘blurredness’ metric, which exploits the fact that reverberation tends to
smooth the rate map by filling the gaps between speech activity with energy
originating from reflections.

The reverberation mask estimation process is illustrated in Figure 14.1.
The left side of this figure shows an auditory spectrogram (‘rate map’) for
speech in anechoic (A) and reverberant (B) conditions. Missing data masks
are shown on the right side of the figure. By comparing the two rate maps
pixel-by-pixel, an a priori mask (C) can be obtained, in which black pixels
correspond to reliable regions (i.e., time-frequency regions whose values did
not appreciably change between anechoic and reverberant conditions). Hence,
the a priori mask may be regarded as a ‘ground truth’ which indicates the
parts of the rate map that have been least affected by reverberation. Panel D
shows a mask estimated by the proposed algorithm, which agrees quite
closely with the a priori mask (C).

The proposed technique has been evaluated on a connected digit recogni-
tion task using the Aurora 2 corpus, and compared against a baseline system
described by Kingsbury (1998). The latter is a hybrid hidden Markov model-
multilayer perceptron (HMM-MLP) architecture, which uses features based
on the modulation filtered spectrogram and perceptual linear prediction.

Figure 14.2. Speech recognition accuracy (%) for the proposed reverberation masking system
(filled circles) and Kingsbury’s hybrid HMM-MLP recogniser (open squares). Test data was
1000 utterances drawn from the test set of the Aurora corpus (male and female speakers).
Acoustic models were trained on clean (unreverberated) signals from the Aurora training set.
Twelve word-level models were used (1-9, ‘zero’, ‘oh’ and silence). Test utterances were
convolved with (real) room impulse responses with T60 reverberation times of 0.7 sec., 1.2 sec.
and 1.5 sec. In the 0 sec. condition utterances were dry (unreverberated). Data from Palomäki et
al. (2004b).
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Results suggest that the performance of our system is comparable with that of
Kingsbury, and even a little better for long reverberation times (Figure 14.2.)
Also, we believe that an advantage of our approach is that assumptions about
the noise conditions are restricted to the mask estimation rule, which can be
adjusted dynamically. On the other hand, Kingsbury’s system (and others that
use noise-robust acoustic features) are intended to operate across a variety of
noise conditions, but are not able to respond dynamically to changes in the
acoustic environment.

4 MASK ESTIMATION IN THE PRESENCE OF AN
INTERFERING TALKER

For ASR in the presence of an interfering talker at a different spatial loca-
tion, we employ a system which is divided into monaural and binaural
pathways (Figure 14.3.) The monaural pathway is responsible for peripheral
auditory processing, and produces feature vectors for the speech recogniser.
The binaural pathway is responsible for sound localisation and separation
according to common azimuth. Acoustic input to the model is obtained by
spatialising speech and noise signals using a model of small room acoustics
and head-related impulse responses (HRIRs) to model the filtering effects of
the pinnae, head and body.

In the binaural pathway, the temporal fine structure in each frequency
channel of an auditory model is processed by a simple model of the prece-
dence effect (see Litovsky et al. (1999) for a review). The envelope of the
channel is computed, and this is smoothed and delayed to produce an inhibi-
tory signal which is subtracted from the temporal fine structure. The effect is

Figure 14.3. Schematic of the binaural auditory model for mask estimation according to
spatial location. The monaural pathway generates acoustic features for speech recognition; the
binaural pathway estimates a time-frequency mask in which selected regions correspond to
acoustic features dominated by the target speaker.
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to allow a strong response to direct sound, while the response to late reverber-
ation is inhibited.

Following this, the azimuth of each sound source is identified by a cross-
correlation analysis of interaural time difference (ITD). Having identified the
location of each sound source, mask estimation is performed by grouping
time-frequency regions that share a common azimuth. For frequency channels
up to 2800 Hz, this is done based on ITD; each channel of the cross-correlo-
gram is checked to determine whether its response is dominated by the target
sound source. For frequency channels above 2800 Hz, the classification is
based on interaural level difference (ILD) (see Palomäki et al. (2004a) for
details). If a time-frequency element is dominated by the target source it is
classified as reliable, and the corresponding mask value is set to one; other-
wise, the mask is set to zero. Finally, the mask from the binaural pathway and
the acoustic features from the monaural pathway are passed to the missing
data speech recogniser for decoding.

The proposed binaural separation system was evaluated on a connected
digit recognition task, using a subset of 240 male utterances from the TIDigits
database (Figure 14.4.) Target speech and another male speaker were
arranged at azimuths of (-20, 20), (-10, 10) and (-5, 5) degrees respectively,
giving overall spatial separation of 40, 20 and 10 degrees between the two
speakers. Target and interfering speech were presented at signal-to-noise
ratios (SNRs) of 0, 10 and 20 dB. In all conditions, the proposed binaural sys-
tem outperformed a baseline HMM recogniser using mel-frequency cepstral
coefficients (MFCCs) with deltas, double deltas and cepstral mean normalisa-
tion. As anticipated, the performance improvement was most substantial for
larger angular separations between the two speakers.

Figure 14.4. Speech recognition in the presence of an interfering talker, which is separated
spatially from the target voice by (A) 40 degrees (B) 20 degrees (C) 10 degrees. Recognition
accuracy is shown for a set of 240 male utterances from the TIDigits corpus at SNRs of 0, 10
and 20 dB. Filled circles show the performance of the proposed binaural separation system,
open squares show the performance of a baseline system which uses MFCCs. Data from Pal-
omäki et al. (2004).
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5 SUMMARY AND DISCUSSION

Two techniques have been described for estimating a mask for missing
data speech recognition, one which is optimised for recognition of speech in
the presence of heavy reverberation, and another which is optimised for rec-
ognition of speech in the presence of mild reverberation and another speaker.
Both systems show performance which exceeds baseline HMM speech recog-
nisers, and the performance improvement is considerable in some conditions.

It should be noted that our binaural separation system may be at odds with
some psychophysical findings regarding the role of ITD in concurrent sound
separation, since we employ ITD for both simultaneous (across-frequency)
and sequential (across-time) grouping. For example, Hukin and Darwin
(1995) have shown that listeners only exhibit a weak tendency to segregate a
harmonic from a vowel, when that harmonic is given a different ITD to the
remaining components of the vowel (see also Culling and Summerfield,
1995). Hence, it appears that across-frequency grouping is primarily mediated
by other cues, such as harmonicity. Future work will address this issue by
integrating harmonicity and common onset cues into our system; this might
give rise to further performance gains, particularly since harmonicity is
known to be a relatively robust cue for auditory grouping in the presence of
reverberation (Darwin and Hukin, 2000; see also Shamsoddini and Denbigh,
2001). Additionally, we intend to incorporate an equalisation-cancellation
mechanism into the binaural system, as an alternative means of estimating
time-frequency masks. We expect this to be beneficial in cases where the
SNR is very low, or where the spatial separation between target and interferer
is small.
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1 INTRODUCTION

At the most general level, the task being addressed in this book is that of
processing the sound field in realistic acoustic environments (containing both
multiple sources and reverberation) in a manner that facilitates goal-oriented
behavior in these environments. In terms of classical terminology (most fre-
quently used when human processing rather than machine processing is
considered), the task is concerned with “Auditory Scene Analysis” and with
factors underlying the “Cocktail Party Effect”. Obviously included as sub ele-
ments of the specified task (beyond mere detection) are the tasks of (a)
separating and localizing the acoustic sources, (b) distinguishing between
characteristics of the received signals that are associated with the transmitted
signals and those that are associated with the signal transformations (the fil-
tering) imposed by the acoustic environment in which the sources and sensors
are located, and (c) comprehending the sources (e.g., understanding the
speech and determining the identity of all the talkers in the event that the
sources consist of a number of people talking simultaneously).

Although some of the relevant research is sufficiently general to apply to
sources other than speech, the focus in this book is on speech communication.
However, the types of systems to be considered with respect to the problem of
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speech reception in complex environments are very broad [including humans,
machines (robots), and combinations of humans and machines (human-
machine systems)]. Such broad coverage is necessitated both by the multiple
goals of the book (understanding humans and designing better machines) and
by the belief that the productivity of research in this area can be greatly
enhanced by the use of multidisciplinary teams attacking arrays of related
problems in a common framework. Overall, it is anticipated that the kinds of
research discussed in this book will advance both (1) our understanding of
how humans solve the problems in question using their natural biological sys-
tems and (2) our ability to design improved machines or human-machine
systems for solving these problems. Past research has clearly demonstrated
that understanding human processing can benefit design of artificial process-
ing and that knowledge of machine processing techniques can play an
important role in understanding human processing. It is also clear that judi-
cious combinations of human and machine processing can lead to systems
that are superior to either type by itself, and that design of optimum human-
machine systems requires improved knowledge of the advantages and disad-
vantages of both types of systems.

This chapter is divided into two parts. The first part contains some general
comments about the tasks and the systems. The second focuses on two impor-
tant highly relevant, currently active, research areas in human auditory
perception: (A) reverberation and (B) informational masking.

2 GENERAL COMMENTS

Roughly speaking, a given system is said to have separated the sources
present in a given acoustic environment if and only if the sounds produced by
these sources do not mask each other and there is no confusion about which
sound comes from which source (i.e., the system is able to detect all the
sounds and to group them into appropriate “auditory objects”). Similarly,
localization refers to the ability of the system to correctly identify the location
of each source (usually in egocentric coordinates). Finally, comprehension
requires that the source message be “understood” (e.g., in the case of speech,
that intelligibility is high).

The extent to which and manner in which these tasks can be accomplished
obviously depends on the acoustic environment and on the type of system
considered (human, machine, or human-machine).

In general, there is a tendency among many investigators to revere human
processing and to try and mimic this processing in the design of machines.
Although we believe (as indicated in the Introduction above) that machine
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designers can gain important insights by considering how humans accomplish
the various tasks, it is important to keep in mind the many ways in which
human processing is poorly matched to some of these tasks. For example, the
peripheral human sensing system is obviously not well designed to perform
spatial analysis (using only two ears with a limited span, performing fre-
quency analysis prior to spatial analysis, etc.). It would be a simple matter to
construct a machine that does a much better job than the human in exploiting
spatial separation of the sources to achieve source separation. Similarly, the
human system is severely limited with respect to memory (storage) capability
(human memory for sounds is strongly limited by trace decay and context-
coding noise) and with respect to information input capacity (as exemplified
by the extreme difficulty one has comprehending more than two simultaneous
speech sources even when direct masking is minimal).

The argument that human auditory processing must be wonderful, like the
argument that human speech production must be wonderful, as a consequence
of biological evolution, is usually misapplied. Although it may be correct that
auditory speech processing and oral speech production constitute superb solu-
tions within the relevant biological constraint space, it is not at all clear that
they are such great solutions within the restricted constraint space usually
considered by speech and hearing scientists. Thus, as indicated above,
although the human sensing array may be near optimal when all the relevant
biological constraints are considered (e.g., the constraint on head size
imposed by birthing considerations), it clearly is not optimal when these con-
straints are eliminated. Similar logic applies to the speech-production
mechanism. There is no reason to believe that the speech-production system
couldn’t be improved if one eliminated “irrelevant” evolutionary constraints
(e.g., the need to use the oral mechanisms for breathing, eating, and biting
one’s enemy, as well as for producing speech). In a sense, one can view the
notion of using our brains to build machines that are better than the human in
this area (as in any other area) as the most relevant evolutionary path. The
challenges currently facing machine designers in the effort to achieve good
performance in the given task areas are multifold. A list of some of these chal-
lenges (in no particular order) is given in the following paragraph.

Design source-separation processing in such a manner that it does not
degrade source comprehension. That this goal is non-trivial is indi-
cated by the extent to which previous work on improving signal-to-
interference energy (or power) ratio in speech processing for human
listeners using single microphone systems failed to improve (and
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sometimes degraded) speech intelligibility because of distortions in
the target-speech signal caused by the processing.

Expand the comprehension goal to include identification of speaker
and of emotional state as well as high intelligibility.

Develop processing that works well in realistic acoustic environments
containing background interference and multipath propagation (rever-
beration) as well as unconstrained speech materials (in terms of con-
tent, talkers, utterances, etc.).

Develop systems that not only reduce the degrading effects of multi-
path propagation on reception of the source message, but clearly sep-
arate source characteristics from multipath characteristics of the space
and make use of these multipath characteristics to identify the space.

Optimally integrate various methods of achieving source separation
based on spectral-temporal filtering (signal characteristics of
sources), spatial filtering (locations of sources), and independent
component analysis (statistical relations among sources).

Fully exploit non-acoustic channels as well as the acoustic channel in
source separation and comprehension (e.g., optical lip reading).

Improve performance in the various tasks through top-down process-
ing and the use of high-level a priori knowledge about speech, talkers,
room acoustics, topics under discussion, etc.

Develop evaluation procedures that adequately measure the perfor-
mance of a system, provide insight into how the system can be
improved, and are applicable to a wide variety of systems.

Although both humans and machines are capable of doing certain compo-
nents of the specified tasks with at least a modest degree of proficiency, it is
obvious that combinations of humans and machines (particularly human-
machine systems in which machine processing is followed by human process-
ing) should be able to do much better than either type of system alone. A
primary challenge related to the development of human-machine systems is to
better delineate the relative advantages and disadvantages of humans and
machines for the given tasks (the above comments related to this delineation
are merely illustrative).

The main purpose of human-machine systems is twofold: to return human
hearing that has been degraded to normal and to create supernormal listening
systems (SLS’s). The types of degradations that occur can be divided into two
classes: “internal” hearing impairments associated with biological degrada-
tions (caused by disease, noise exposure, or old age) and “external” hearing
impairments associated with the occurrence of interference prior to reception
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of the acoustic energy at the eardrums (e.g., caused by the wearing of sound-
obstructing headgear). Constraints on SLS performance imposed by limita-
tions of the human system focus on human input capacity and human learning
rates. Assume, for example, that a machine preprocessor has been constructed
that separates and localizes ten simultaneous sources perfectly but is not capa-
ble of performing the cognitive functions required to effect comprehension of
all the sources. How is it possible to present these ten streams of information
to the human system in a satisfactory manner? Even if the notion of “separate
ears for separate sources” worked, the human does not have enough ears to go
around. At present, the main approaches to this problem, all of which are
problematic, are to (1) record and listen to the different sources sequentially,
(2) employ team listening (i.e., use one human for each source) or (3) process
the multichannel output of the machine in such a way that a single listener is
presented with a single source as “foreground” and the other sources as “back-
ground” (with an option for the single human listener to select which source is
presented as foreground). As one might imagine, efficient use of single-lis-
tener real-time systems (such as foreground/background systems) may require
significant listener training because of unfamiliar display codes employed or
the need to adapt to various sensorimotor transformations.

An additional highly related area in human-machine system research that
continues to offer substantial rewards focuses on the time-varying or situa-
tion-varying use of humans to help machines or machines to help humans
when the other type of system requires help. One such case involves the use of
humans to monitor and correct or facilitate machine processing when the
machine processing makes errors or encounters problems that are too difficult
for the machine to handle alone. In principle, the determination of when the
human needs to be called in to help the machine can be made by the machine
as well as by the human. In general, applications of this kind can provide effi-
cient and productive (more or less continuous) interpolations between
machine processing and human processing.

3 TWO IMPORTANT RELEVANT RESEARCH
AREAS IN HUMAN AUDITORY PERCEPTION

3.1 Reverberation

A major thrust in the effort to characterize, understand, and model audi-
tory perception in realistic acoustic environments focuses on the effects of
multi-path propagation (reverberation). A crude outline of these effects is
shown in Fig. 15.1. As far as physical acoustics is concerned, reverberation
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tends to increase the overall amplitude of the signals, to modulate the signal in
frequency and to smear it in time, and to be directionally diffuse (tending
towards isotropicity). In addition, the direct-to-reflected energy ratio (D/R)
tends to decrease with distance between source and receiver, and the correla-
tion between the signals received at different locations tends to decrease as
the D/R ratio decreases. A pictorial representation of various acoustic effects
is shown in Fig. 15.2.

Figure 15.1. A summary of reverberation effects.
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Figure 15.2. Illustrations of reverberation effects: (a) a sample source-to-listener impulse
response in a reverberant room (the inset shows a finer time scale); (b) the time-course of direct
and reverberant signal power when a sound source is gated on and off; (c) the variation in direct
and reverberant power with distance from the source; (d) the interaural correlation as a function
of the direct-to-reverberant power ratio; (e) a comparison of spectrograms of the word ‘sag’
spoken in anechoic and reverberant environments (note the different time scales for the two
spectrograms).



228 Speech Separation

Figure 15.3. Relative level of a broadband masking noise (M) needed to mask a third-octave
target signal (T) using stimuli constructed from a computer simulation program and presented
through earphones. The simulated room was rectangular with surfaces having a constant
absorption coefficient The listener was modeled by a rigid sphere with two sensing points
simulating the ears. The simulated target source T was directly ahead of the simulated listener
with the masker M 60 degrees to the listener’s right. Threshold masker levels measured when
using the left ear only, both ears (binaural), or the right ear only are plotted in the first three
columns; the fourth column shows the difference between binaural and left-ear listening. The
top and middle rows show results for (anechoic) and respectively, as a
function of target center frequency. The bottom row shows the dependence of results on the
absorption coefficient at a fixed target frequency of 500 Hz. All measurements and
predictions are normalized to the masker level needed for left-ear listening with co-located
target and masker at 0 degrees in an anechoic room. Data points are results from individual
listeners; lines are predictions based on statistical room acoustics and the assumption of a
constant target-to-masker ratio at threshold for monaural detection; predictions for binaural
detection are derived from the EC model. [Reprinted with permission from Zurek et al. (2004).
“Auditory target detection in reverberation,” J. Acoust. Soc. Am. 115, 1609-1620, Copyright
2004, Acoustical Society of America.]

On the perceptual level, these physical characteristics cause reverberation to
have a positive effect on detection in quiet, a mixed effect on localization
(degrading the perception of source direction but enhancing the perception of
source distance), a mixed effect on monaural detection of target sources in
backgrounds of interference (the monaural signal-to-interference ratio
depending on the details of the configuration), and most often (but not
always) a negative effect on binaural unmasking because of interaural decor-
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Figure 15.4. Median absolute localization errors (averaged across listeners). Error bars show
across-listener standard deviation. Results are compared for a study conducted in a reverberant
classroom (see Shinn-Cunningham, Kopco, and Martin, in press, for details about the acoustic
environment) and a nearly identical study conducted in an anechoic chamber (Brungart and
Durlach., 1999). In both studies, median absolute difference between the source position and
the listener response was calculated for the lateral angle, up-down angle, and distance. Median
absolute error was computed over the initial 250 trials (“initial”) and trials 750-1000 (“final”).
Initial errors in lateral and up/down angle were larger in the reverberant room than in anechoic
space, but distance errors were significantly smaller in the room than in anechoic space. In
anechoic space, errors do not change significantly between the beginning of the experiment and
the trial. In contrast, errors in all three spatial dimensions decrease in the room.

relation. The effect on intelligibility is generally negative because of temporal
and spectral alterations; however, speech signals, like other signals, will tend
to become more audible. The effects are also mixed subjectively (e.g., con-
sider the effects of different types of reverberation on the enjoyment of
music). To the best of our knowledge, there are no adequate data on the
effects of reverberation on the task of source separation (as defined in Sec. II
above). Also lacking is any serious study of the extent to which and manner in
which humans factor the complex spectrum of the signals received at the ears
into the complex spectrum of the signal emitted by the source and the com-
plex transfer function associated with the filtering that occurs as a result of the
multi-path propagation from the source to the ears.

Data on the effects of reverberation for the detection of a narrowband
noise target in a broadband noise masker (from Zurek et al, 2004) are shown
in Fig. 15.3. The two upper rows of this figure show how the binaural detec-
tion advantage that occurs in anechoic space is degraded by reverberation for
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Figure 15.5. Histograms of instantaneous interaural phase difference (IPD) estimates in a
wideband noise, extracted from a narrowband 500-Hz short-term cross-correlation model (see
Shinn-Cunningham and Kawakyu, 2003). The model input is a broadband noise convolved
with head-related impulse responses to simulate the signals reaching the listener’s ears in
anechoic space or in two locations in a classroom. These acoustic signals are processed through
a model of the auditory nerve, then cross-correlated within non-overlapping short (8-ms-long)
time windows. The model uses the entire cross-correlation function over interaural time
differences from –1 to +1 ms to estimate the IPD in each 8-ms-long time window. The resulting
IPD estimates were accrued to produce the histograms in the plots as a function of source angle.
The open circle and connecting line in each plot show the best estimate of IPD created by
combining the instantaneous estimates over one second. The across-time integration takes into
account the IPD of each estimate, as well as its reliability (see Shinn-Cunningham and
Kawakyu, 2003). Results show how even modest levels of reverberation increase the variability
in instantaneous estimates of source laterality; however, even with this reverberation-caused
variability, across-time integration produces reasonably accurate location estimates.

various center frequencies of the narrowband-noise target, whereas the bot-
tom row shows how the degradation depends on the absorption coefficient of
the reflecting surfaces. Research is now underway to extend these results
(including the theoretical predictions) from the case of detecting a narrow-
band target signal in environments with both masking noise and reverberation
to the case of speech intelligibility in environments with both masking noise
and reverberation (Zurek and Freyman, 2003).

The effect of reverberation on errors in the perception of lateral angle, up/
down angle, and distance are shown in Fig. 15.4 (Shinn-Cunningham, 2000;
Brungart and Durlach, 1999). This figure not only illustrates how reverbera-
tion tends to decrease accuracy in the perception of angle (despite the
precedence effect) and to increase accuracy in the perception of distance, but
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also suggests that learning effects may be more pronounced in reverberant
conditions than in the anechoic condition (consistent with the notion of
“room-learning”).

The materials in Figs. 15.5 and 15.6 (which show extensions of the analy-
sis in Shinn-Cunningham and Kawakyu, 2003) illustrate the effects of
reverberation on the estimation of interaural phase angle (or time delay),
which plays such an important role in both the perception of lateral angle and
(according to many theoretical models) binaural unmasking. Fig. 15.5 shows
histograms of interaural-phase-difference IPD estimates (for a 500-Hz tone)
derived from analysis of running (short-term) cross-correlation functions,
together with “final” estimates of these differences based on analysis of all the
cross-correlation information. Among other things, these results suggest that
the degrading effects of reverberation on the perception of lateral angle can be
combated not only by the precedence effect but also by appropriate analysis
of the running cross-correlation function (which applies even when the trans-
mitted signal is continuous and does not contain any strong transients). Fig.
15.6 illustrates how the task of detecting a 500-Hz tone at 90° lateral angle in
a background of random noise at 0° (using a running cross-correlation model)

Figure 15.6. Demonstration of the effects of room reverberation on binaural unmasking of a
tone in noise. Each panel shows the raw output of the 500-Hz channel of the medial superior
olive model described in Shinn-Cunningham and Kawakyu (2003) as a function of time for a
wideband noise plus a 500-Hz tone pip. In both panels, the noise has a duration of one second
and comes from straight ahead of the listener. The tone has a 100 ms duration and comes 90
degrees to the right of the listener. In anechoic space, the presence of the tone is evident from
the across-time variation in the model output, which reflects the interaural decorrelation caused
by the tone. However, in a classroom simulation (bottom panel), the interaural decorrelation
caused by the reverberation makes detecting the tone decorrelation much more difficult.
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is complicated by the presence of reverberation: whereas in the anechoic case
(the top strip), the presence of the target tone is obvious because of its clear
decorrelation effect, in the reverberant case (the bottom strip), substantial
analysis is required to detect the tone because of the decorrelation present
even in the noise–alone portion of the stimulus.

The results in Fig. 15.7 illustrate the effect of target-source distance on the
target-to-masker ratio (TMR) required for detection in a reverberant environ-
ment (relative to the anechoic condition) for the case in which both the target
(T) and the masker (M) are at 0° and the case in which the target is moved 90°
to the right (Shinn-Cunningham et al., 2002). In the former case, the binaural
performance improves with distance because of a decrease in interaural corre-
lation of the target signal with distance (while the masker

Figure 15.7. Difference in threshold Target-to-Masker Energy Ratio (where threshold TMR is
defined as TMR at which target speech sentence is 50% intelligible) between reverberant and
anechoic listening conditions (Shinn-Cunningham et al, 2002). Plots show the anechoic TMR
minus the reverberant TMR. (so that difference is positive when reverberation improves
performance. Black lines show results for binaural listening, gray for left ear alone, and black-
dashed for right ear alone. Both the masking signal (noise with a spectrum matching the aver-
age long-term spectrum of the target utterances) and the target speech were simulated at
different locations using head-related transfer functions measured in a classroom. The masking
noise was always located 15 cm from the center of the head at azimuth 0 and elevation 0. The
target speech location varied; in the left panel, the target was straight ahead, while in the right
panel it was at 90 deg azimuth to the right. The abscissa in both panels is the target distance.
Results show that reverberation improves binaural conditions (black line, left panel) when the
target is more distant than the masker. When the target is to the right, the main effect of rever-
beration is to improve performance when listening to the left ear stimulus alone, an effect that
grows with source distance. This result is consistent with the fact that reverberation effectively
boosts the audibility of the left ear signal, which receives relatively little direct sound energy in
the anechoic condition.
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exhibits high interaural correlation). In the latter case, the left-ear perfor-
mance improves with distance because of the increased target-energy at the
left ear (relative to the anechoic case).

Finally, the results in Fig. 15.8 illustrate the often cited fact that speech
reception remains relatively robust for humans under at least moderate rever-
berant conditions. According to the data shown in this figure (Devore et al,
2003; Devore and Shinn-Cunningham, 2003), performance remains over 90
percent correct for the identification of initial and final consonants in non-
sense syllables for monaural as well as binaural listening in both a classroom
environment and a bathroom environment (chance performance in these tests
was 11 -percent correct). Apparently, in order for performance to be seriously
degraded, both highly reflecting surfaces and a long reverberation time are
required. It should also be noted that although consonant identification in
quiet is relatively robust for the kinds of reverberation employed in these
experiments, when noise as well as reverberation is present, performance can
be degraded very substantially, i.e., the effects of reverberation plus noise are
worse than the sum of these effects in isolation (an important phenomenon not
shown in the accompanying figures).

Figure 15.8. Percent correct identification performance for stop consonants in CVC carrier
phrases in three simulated environments: anechoic space, a classroom, and a highly reverberant
bathroom (Devore et al, 2003; Devore and Shinn-Cunningham, 2003). Results are shown for
both monaural and binaural listening conditions. The task was to identify the initial (left panel)
and final (right panel) consonants in the CVC. Chance performance was 1/8. In all conditions,
listeners performed well. Performance was slightly worse in the final consonant conditions in
the reverberant environments, where the reverberation due to the preceding part of the CVC
utterance helped to mask the final consonant. Binaural listening yielded better performance
than monaural performance for initial consonants in the highly reverberant bathroom and for
final consonants in the classroom condition.
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Generally speaking, reverberation constitutes a major challenge both in
our attempt to understand human auditory processing and in our attempt to
build machines that function well in realistic acoustic environments. Although
significant progress is being made in both of these efforts, much further work
is required before success can be claimed for either effort.

3.2 Informational Masking

A second major component of the effort to characterize, understand, and
model human auditory perception in realistic acoustic environments that is
directly relevant to this chapter focuses on the effects of acoustic interference
(masking). Of special interest at the present time are masking phenomena that
appear related to central auditory processing. Masking that results from com-
petition between target and masker at the periphery (e.g., in the auditory nerve
firing patterns) is now often referred to as “energetic” masking, whereas
masking that is not energetic, particularly if it results from stimulus uncer-
tainty, is referred to as “informational” masking. (A recent discussion of some
of the relevant conceptual issues in this area, including how one should define
“competition at the periphery” and the extent to which one should regard all
non energetic masking as informational masking, can be found in Durlach et
al., 2003a). While we do not fully understand energetic masking, even after
decades of study, the situation is much worse for informational masking: with
this latter type of masking, each new finding seems to generate more ques-
tions than answers (as illustrated by the puzzles discussed at the end of this
chapter).

The experimental results shown in Figs. 15.9 and 15.10 (Durlach et al.,
2003b) illustrate (a) the occurrence of informational masking for the case of
simultaneous masking of pure-tone signals by multitone complexes with
spectra that vary randomly from presentation to presentation (but have no
masker energy in the frequency regions near the target so that energetic mask-
ing is minimized) and (b) the decrease in informational masking that can be
achieved by decreasing the similarity (increasing the dissimilarity) between
target and masker. The upper portion of Fig. 15.9 shows schematically how
the target signal (indicated by the heavy line) was altered to decrease similar-
ity with the masker [by shortening duration in Exp. 1, by reversing the
frequency sweep in Exp. 2, by changing the interaural relations in Exp.3 (spa-
tial), by jittering the target frequency in Exp. 4 (MBS=Multiple-Burst-Same),
and by stabilizing the target frequency in Exp. 5 (MBD=Multiple-Burst-Dif-
ferent)]. The lower portion shows, for each of the five experiments, how the
amount of informational masking (an amount that can exceed 40 dB in some
subjects) was reduced when each of the dissimilarities noted above was intro-
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Figure 15.9. The effect of various types of dissimilarities between target and masker on the
informational masking of tones masked by multitone maskers with component frequencies
selected randomly on each trial (excluding a protected frequency zone around the frequency of
the target tone). The upper portion of the figure illustrates the five types of dissimilarity
introduced (Duration, Spatial, Sweep, MBS, and MBD) and the lower portion shows the
reduction in masking achieved with each type. The error bars show the standard error of the
mean (over the five listeners tested). [Reprinted with permission from Durlach et al, 2003b,
“Informational Masking: Counteracting the effects of stimulus uncertainty by decreasing
target-masker similarity”, JASA 114, 368-379, Copyright 2003, Acoustical Society of
America.]

Figure 15.10.Results for individual listeners (see caption for Fig. 15.9). [Reprinted with per-
mission as specified in caption for Fig. 15.9].
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duced. Whereas the results shown in Fig. 15.9 represent averages over five
listeners, the results shown in Fig. 15.10 are for the individual listeners. These
latter results illustrate the large individual differences that occur with infor-
mational masking (compare, for example, the results of the MBS experiment
for Listener 3 and Listener 5). This raises the obvious question: “Why do sub-
jects differ so much in their susceptibility to informational masking, even
when they may differ hardly at all in their susceptibility to energetic mask-
ing?” Answering this important question appears to be essential to the
development of any comprehensive theory of masking.

The material in Figs. 15.11-17 is taken from a recent research project on
informational masking (extending earlier work by Argbogast et al., 2002) in
which (a) processed speech signals were used for the target and different, but
similarly processed speech signals or random noise were used for the masker;

Figure 15.11. A brief summary of the conditions tested in the Kidd et al. (2004a) study of
informational masking. The “Constant Conditions” were common to all experimental condi-
tions while the “Parametrically Varied Conditions” were the main variables under test.
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and (b) both spatial separation of sources and room reverberation were manip-
ulated (Kidd et al., 2004a). The processed speech signals were obtained by
filtering speech into 15 frequency bands; using the envelope extracted from
each band to modulate a carrier with a frequency equal to the center of the
band; and then summing over a specified subset of these bands (in all cases,
these processed speech signals were highly intelligible). The target signal
always consisted of a summation of 8 of the 15 bands with the particular
choice of bands (as well as the choice of sentence and talker) selected ran-
domly. The masker then consisted of similarly processed speech using a
different (disjoint, non-overlapping) set of bands (Diff-S), random noise using
a different set of bands (Diff-N), or random noise using the same set of bands
(Same-N). The Diff-N masker was constituted in such a way that its spectrum

Figure 15.12. Examples of the signals (light gray) and maskers (black) used in the Kidd et al.
(2004a) study of informational masking. The left column contains plots of the time waveforms
while the right column contains plots of the magnitude spectra. The same signal sentence is
shown in each row paired with a different-band speech (Diff-S) masker (upper row), different-
band noise (Diff-N) masker (middle row) and same-band noise (Same-N) masker (lower row).
[Reprinted with permission from Arbogast et al., 2002, “The effect of spatial separation on
informational and energetic masking of speech”, J. Acoust. Soc. Am.112, 2086-2098, copyright
2002, Acoustical Society of America].
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was approximately the same as that of the Diff-S masker. By design, the
Same-N masker was predominantly energetic whereas the Diff-S masker was
primarily non-energetic. The Diff-N masker was a control for the (very) small
amount of energetic masking produced by leakage from the Diff-S bands into
the signal bands. The experiments were conducted in a sound field with loud-
speakers; the target was always at 0° azimuth with the masker always at either
0° or 90°, and the reverberation characteristics of the room were varied over a
wide range of values. The conditions tested were “Bare” (standard IAC booth
walls with no acoustic treatments), “Foam” (all surfaces covered with 8”
wedges of Silent Source@ foam), and “Plex” (all surfaces covered with Plexi-
glas@ panels). Fig. 15.11 outlines certain conditions of the experiments; Fig.
15.12 illustrates the relation between target and masker for the Diff-S, Diff-N,
and Same-N maskers; and Fig. 15.13 provides information on the reverbera-
tion present in the conditions Bare, Foam, and Plex.

Some preliminary results from this project are shown in Figs. 15.14 and
15.15. The first of these figures shows the amount of masking evidenced by
five listeners for the three different types of maskers, the three different rever-
berant conditions, and the two signal-masker spatial- separation conditions.

Figure 15.13. Impulse responses for speaker locations at 0 deg (left column) and 90 deg (right
column) azimuth for the Foam (upper row), Bare (middle row) and Plex (lower row) room
conditions (from Kidd et al., 2004a). [Reprinted with permission from Kidd et al., 2004a, “The
role of reverberation in release from masking due to spatial separation of sources for speech
identification”, Acustica with Acta Acustica, in press.]
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Figure 15.14. Individual results expressed as amount of masking (masked threshold minus quiet
threshold) for five listeners (L1- L5) for three masker types (columns) and three room condi-
tions (rows). The filled triangles are for 0 deg spatial separation and the open circles are for 90
deg spatial separation (from Kidd et al., 2004a). The error bars show the standard deviation of
the results across runs (most of the bars are too small to be seen). [Reprinted with permission
from Kidd et al., 2004a, “The role of reverberation in release from masking due to spatial sepa-
ration of sources for speech identification”, Acustica with Acta Acustica, in press.]

Figure 15.15. Group mean spatial release from masking for the results shown in the previous
figure. Spatial release is computed as the threshold at 0 deg separation minus the threshold at
90 deg separation. The results are grouped by masker type (Diff-S, Diff-N and Same-N) for
each room condition. The error bars show the standard deviation across listeners. [Reprinted
with permission from Kid et al., 2004a, “The role of reverberation in release from masking due
to spatial separation of sources for speech identification”, Acustica with Acta Acustica, in
press.]
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The second shows the release from masking in going from the 0° condition to
the 90° condition (averaged over listeners). The important results to be noted
here about informational masking (the Diff-S conditions) relative to energetic
masking (the Same-N condition and the Diff-N condition) are (1) the much
greater variability among listeners, (2) the much greater spatial release from
masking, and (3) the much smaller degrading effect of reverberation on the
spatial release from masking. Presumably, the negative effect of reverberation
on the advantages associated with spatial separation in energetic masking is
due to the manner in which reverberation corrupts interaural time and ampli-
tude cues. The question then is  “Why are the advantages of spatial separation
not eliminated by reverberation in informational masking?”

Two further puzzles in the domain of informational masking are repre-
sented schematically in Figs. 15.16 and 15.17. In the experiments referred to
in Fig. 15.16 (Kidd et al., 2003), the stimuli consist of multiple bursts of
sound: the target is a multiple burst of a fixed-frequency tone and the masker
is a multiple burst of a multitone complex with frequency components chosen
randomly on each trial (outside of a protected region around the target fre-
quency). In the multiple-burst-same (MBS) masker, the component
frequencies of the multitone masking complex remain the same for all bursts
in the stimulus. In the multiple-burst-different (MBD) masker, these compo-
nents are jittered in frequency from burst to burst. Generally speaking,
detection performance in the MBD case is better than in the MBS case
because introducing the jitter into the masker helps the listener separate the
target (which is not jittered in frequency) from the masker. As pictured in Fig.
15.16, detection is relatively easy when either the masker is MBD or, if it is
MBS, it is moved to the contralateral ear. However when the two conditions
are combined (i.e., the MBD masker is in the target ear and the MBS masker
is in other ear), detection becomes exceedingly difficult. (Results for the
speech analog of this experiment are available in Brungart and Simpson,
2002). It should also be noted that when the masker in either ear is energetic
(specifically, Gaussian noise), no additional masking is observed, i.e., the
masker in the contralateral ear can be ignored. Thus, an additional issue here
concerns the differences between informational and energetic masking with
respect to how the effects of the ipsilateral and contralateral masking
combine.

In the experiments referred to in Fig. 15.17 (Kidd et al., 2004b), which
used the same types of processed speech and noise stimuli as those considered
in Figs. 15.11-15, another puzzling phenomenon related to the interaction of
maskers and binaural-vs.-monaural stimulation occurs. As indicated in the
figure, and as expected, detection is difficult when a Diff-S masker is used to
mask a target talker in the same ear, i.e., when informational masking is
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present. As one might conceivably also expect (although it certainly violates
the notion of simple additivity of maskers), detection performance is
improved when a Diff-N masker using the same frequency bands as the
speech masker is introduced into the same ear. Presumably, this improvement

Figure 15.16. A schematic illustrating the conditions tested in the study by Kidd et al. (2003).
The task is to detect the presence of a sequence of constant-frequency tones in the presence of a
sequence of randomized ( “jittered”) multitone maskers played in the test ear (top left), in the
presence of a sequence of constant-frequency tone bursts played opposite the test ear (lower
left), and when both conditions are combined (upper right). Lower right poses the paradoxical
question motivated by the outcome of this experiment.

Figure 15.17. A schematic in the same form as the preceding figure showing test conditions in
the study by Kidd et al. (2004b). The target speech is composed of 8 narrow bands masked by a
different talker composed of 6 nonoverlapping bands, a condition that produces substantial
informational masking (upper left). When the 6 speech-masker bands are covered up by 6
overlapping narrow bands of noise, the intelligibility of the target improves (lower left) even
though more masker energy is present than with the speech masker alone. Paradoxically,
shifting the noise masker to the ear opposite the speech target and speech masker improves
performance even more (upper right). The question motivated by this unexpected effect is then
posed in the panel (lower right).
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in detection performance occurs because the masking effect of the noise
masker on the speech masker (energetic masking of the speech masker by the
noise masker) is greater than its masking effect on the speech target. How-
ever, surprisingly, when this same noise masker is switched to the
contralateral ear, detection performance improves even more. The puzzling
question here then is “Why does the masking effect of the noise masker on the
speech masker (relative to its effect on the speech target) have a greater effect
when it is presented to the ear opposite to the target than when it is presented
to the same ear as the target?”

In general, just as in the case of reverberation, it is painfully obvious that
much further work needs to be done to adequately characterize, understand,
and model informational masking phenomena.
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Chapter 16

The Cancellation Principle in Acoustic Scene
Analysis

Alain de Cheveigné
Ircam-CNRS, Paris, France
alain.de.cheveigne@ircam.fr

1 INTRODUCTION

The acoustic environment is often cluttered. The ears of an organism sam-
ple mixtures of acoustical waveforms coming from multiple sources, rather
than the source waveforms themselves. Making sense of the environment on
this basis is a process known as Auditory Scene Analysis, or ASA (Bregman
1990). If the organism is interested in a particular source (the target), the pres-
ence of other sources (jammers) interferes with target perception.
Unfortunately, perceptual models are generally designed to handle a single
isolated source, and extending them to work within a complex environment is
a challenge. Similar problems arise when designing an artificial device (such
as a speech recognizer) to work in an acoustically cluttered environment.

Cues used by humans have been reviewed by Bregman (1990). Generally
speaking, they consist in regularities of the source and/or the scene. These
include spatial location (correlation between ears or sensors), periodicity (cor-
relation across time), common onset (correlation across frequency channels),
familiarity (correlation with predetermined templates or patterns), etc. Artifi-
cial systems have been built that use similar regularities (Cooke and Ellis
2001). Traditionally, most efforts have concentrated on regularities of the tar-
get that allow it to be enhanced. This paper describes an approach that instead
uses regularities of the jammers to suppress them.

Jammer “structure” takes many forms. One or several jammers may be
predictable, or periodic, or jammer components may be correlated across sev-
eral sensors. These basic structures may be extended to include amplitude
variation, frequency modulation, moving sources, etc. Each bit of exploitable
jammer structure opens a window through which the target can be
“glimpsed”.

The focus here is mainly on artificial systems (typically automatic speech
recognition, ASR), but understanding how the auditory system handles such
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tasks is also a goal, in itself and as a source of ideas for better algorithms.
Conversely, effective algorithms may serve as models to guide our investiga-
tion of natural processes.

2 TASK AND CONTEXT

The task is to recognize or recover a target source within a noisy environ-
ment. For simplicity, suppose two sources T (the “target”) and J (the
“jammer”) that are observed indirectly from signals X and Y provided by one
or two microphones. This structure can be generalized as needed to more
sources and/or sensors as needed. Sources and observations are related via a
mixing matrix that is convolutive: each matrix element is a transfer function
(or impulse response) that represents the effects of propagation delay and dis-
persion from a source to a transducer (Fig. 16.1). Two subtasks are of interest.
The first is to derive useful information about the structure of the scene and/or
the sources: intersensor correlation, source fundamental frequencies
etc. The second is to recover a “clean” version of the target.

It is often possible to derive an approximation T’ of the target from the
observed signals. T’ depends on both target and jammer:

Ideally we’d like f( ) to be identity and  to be zero (no distortion and no
crosstalk, respectively). Arguably of these two ideals the latter is the most
useful. Whereas target distortion is typically predictable and can be compen-
sated, crosstalk is usually unpredictable and cannot.

Typical application contexts are ASR, conference systems, hearing aids,
musical applications (recording, score following, interactive systems), multi-
media indexing, etc.

Figure 16.1. Observed signals X (and possibly Y) are related to target T and
jammer J via a mixing matrix. The goal is to derive information about the
target T.
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3 ASSUMPTIONS ON SOURCE AND SCENE
STRUCTURE

Cancellation is usually applied in the time domain. At each instant t, an
estimate of the jammer waveform is subtracted from the compound wave-
form. Three cases are of interest, that differ according to whether the jammer
estimate comes from (1) a predetermined template waveform, (2) previous
values of the waveform being processed, or (3) the waveform of another
sensor.

The first case (subtraction of a waveform template) is ideal but rare.
Examples might be a stationary jammer, or the stereotyped waveform of an
instrument note, either known beforehand or estimated from the context. It is
ideal because subtraction leaves the target undistorted.

The second case is that of a periodic jammer where P is the
period. Suppose that the observed signal is the sum of the target and the jam-
mer By subtracting the contribution of J is suppressed:

The result T’ depends only on T and not on J. It is spectrally distorted as a
result of the processing, but jammer rejection is infinite.

The third case is that of multiple sensors in an anechoic environment.
Things are a bit simpler if X and Y are rescaled in time and amplitude so that
the contribution of J to each is the same:

This contribution is then suppressed by forming:

The result T’ depends only on T and not on J. It is spectrally distorted as a
result of the processing, but jammer rejection is again infinite.

These basic cases can be extended. For example the periodic jammer
model can be extended to a variable amplitude periodic jammer
For that, Eq. 1.2 is replaced by A variable frequency jammer
can be handled by time warping the observed signal before processing, a mov-
ing source by a combination of time warping and gain adjustment, etc. These
operations may be performed within bands of a filterbank, with coefficients
that vary from band to band.
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The basic cases can also be combined (e.g. multiple periodic sources
picked up by multiple sensors, etc.). Cancellation fails in two cases: (a) the
jammer does not fit any structure model, and (b) it does, but the target fits the
same model. The rest of this paper discusses how to handle those cases.
Before that, we discuss the issue of estimation of the source and scene struc-
ture parameters.

4 ESTIMATING SOURCE AND SCENE
STRUCTURE

Several aspects of the structure of the source or scene are useful for can-
cellation, supposing that their parameters can be estimated from the available
data.

Jammer template. In some cases the jammer waveform can be com-
pletely estimated. A simple example is a deterministic stationary jam-
mer such as hum (power frequency harmonics picked up by low-level
audio circuits). Granted the mild assumption that the target has inter-
vals of low amplitude, the jammer template can be obtained from a fit
to the waveform in those intervals. Granted the further assumption
that the jammer is indeed stationary and deterministic, the template is
interpolated and subtracted from the entire waveform. The advantage
is that the jammer is subtracted, rather than filtered out, and thus there
is no spectral distortion of the target. More complex examples are
possible but not discussed here.

Periodicity. In other cases the period of the jammer, rather than its
waveform, can be estimated. Cancellation itself can be used for this
purpose. The idea is to search the parameter space of a cancellation
filter looking for a minimum residual output. For example, to estimate
the period of an isolated source the filter defined by Eq. 1.2 is applied
and its parameter P is varied until a minimum is found. This principle
was applied with success in the YIN method of estimation (de
Cheveigné and Kawahara, 2002). The same principle can be extended
to multiple sources (de Cheveigné and Kawahara, 1999; de Chev-
eigné and Baskind, 2003).

Intersensor delay/attenuation. The jammer waveform may lack
structure, but it may contribute to several observations with certain
delays and attenuation factors. Again, these factors may be estimated
by cancellation. The idea is to search the parameter space of a spatial
cancellation filter (null beamformer) looking for a minimum of the
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residual output. For example, to estimate delay and attenuation of a
single source supposing nondispersive propagation, the filter defined
by is applied to sensor signals and its parameters and
varied until a minimum is found.
The principle can be extended to dispersive propagation and more
than two sources/sensors by splitting the signals over a filterbank and
working within narrowband channels. More on this later. From
intersensor parameters one can infer source positions (within surfaces
of confusion). However source positions are not of direct use for can-
cellation unless we wish to include spatial constraints, for example
within a multimodal system.

Joint estimation. Periods, intersensor parameters, and templates can
be estimated jointly. In this case, estimation of each aspect of the
structure is aided by other aspects. For example estimation may
be aided by spatial structure, and vice-versa.

5 RECOVERING THE TARGET

Supposing the scene fits a structure model, and its parameters are known, a
time-domain waveform T’ can be obtained according to equations analogous
to Eqs. 1.2 and 1.3. This waveform (or its equivalent spectrum) is then fed to a
pattern-matching or resynthesis stage, together with structure parameters if
needed. As pointed out in Section 2, cancellation allows perfect jammer rejec-
tion in ideal conditions. In practice these conditions may arise only within
limited time or frequency intervals.

6 LOCAL CANCELLATION AND MISSING DATA

A likely event is that cancellation is possible for a restricted temporal
interval. For example if the jammer is voiced speech, harmonic cancellation
can be applied only during steady-state voiced segments, during which the
target may be “glimpsed”. Cancellation might also be possible within a
restricted spectral interval. For example, narrow-band noise may prevent can-
cellation within some bands. The target is “glimpsed” within the bands that
remain. Combining both ideas, one may apply cancellation within a restricted
spectrotemporal region. Note however that the efficacy of simultaneous
bounds in time and frequency is limited by the Gábor relation (Gábor, 1947).

Supposing cancellation is effective only locally, parts of the target will be
missing. The parts that remain may nevertheless be sufficient for a task such
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as pattern-matching (e.g. ASR). Missing data techniques have been developed
to address this situation (Cooke et al., 1997; Lippmann and Carlson, 1997;
Morris et al., 1998). Missing features are either ignored, or (if possible) con-
strained by bounds derived from the target + jammer mixture. These
techniques assume a “mask” to tell them which intervals are missing. In the
context of cancellation, the mask is a by-product of the cancellation process.

A second problem is that the target “glimpses” are usually spectrally dis-
torted by the cancellation filters. An option is to compensate by inverse
filtering, but a more general solution is to apply similar distortion to the tem-
plates in the pattern-matching stage. Information needed for that purpose may
be available from the cancellation stage. Template (or model) adjustment is
not yet common among missing feature techniques (see de Cheveigné, 1993b,
for an early attempt).

7 MODELS

Pattern-matching is a special case of model fitting. Once a model is fitted
(possibly on the basis of incomplete data) it allows interpolation. The models
embedded in an ASR system (states, covariance matrices, dictionaries, etc.)
can be used in this way. Other useful models are articulatory, multimodal, lin-
guistic, etc. Redundancy relations between features may allow accurate
interpolation when one feature is missing and the other not.

8 POWER AND VARIANCE PARTITION

Obviously one must know which features are reliable and which are not.
This section suggests one possible approach to obtain this information from
the observed signals. The idea is to partition the power within a mixture into
parts that reflect various sources. This partition is also useful as a partition of
the power spectrum (thanks to Parseval’s relation). A partition of power can
also be interpreted as a partition of variance (sum of squares). Variance esti-
mates can then be used to parametrize statistical models from which feature
reliability can be inferred.

As an example, consider a quasiperiodic jammer J. It is possible to
express it as the sum of two signals J’ and J”:
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If J is purely periodic with period P, then J’=0 and J”=J. J’ is nonzero
only if J is not perfectly periodic, and in that sense we can call J’ the “aperi-
odic” part of J, and J” the “periodic” part.

What makes this partition useful is that it is also a partition of power.
Defining the local power of a signal X (measured over a window starting at t)
as:

it is easy to verify that:

The term on the left is the average of two estimates of the power of the jam-
mer (over slightly different windows), and the right hand terms are powers of
aperiodic and periodic parts respectively. Parseval’s relation implies a similar
partition of power spectra. Spectrally, the partition can be represented by the
transfer functions and

In the context of cancellation, J’ represents crosstalk. If T’ is the cancella-
tion-filtered target, the output of the cancellation stage is T’+J’. The quality
of the recovered target depends on the relative weights of and These
cannot be observed, but there are several situations where they can be
inferred:

Jammer properties may be known well enough to put an upper bound
on the ratio Using the power of the observed signal as
a statistically conservative bound on we get an upper bound on
crosstalk power Thanks to Parseval’s relation, this reasoning
may be applied to each frequency.

The target too may be periodic. A full analysis is complicated and
will be outlined only briefly. Calling P and Q the periods of jammer
and target, the observable signal X can be expressed as the sum of
four parts:

15.

16.
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As above, this defines a partition of signal power. The first quantity is
zero iff target and jammer are perfectly periodic (quantities and are
zero if target or jammer are periodic, respectively). Under certain assumptions

can be used as an estimate of the power that is “unaccounted” for by a
sum-of-periodic-signals model, i.e. crosstalk. Again, this reasoning can be
applied to each frequency, based on Parseval’s relation.

Similar operations can be performed in the multisensor and hybrid cases.
Power is defined as a mean sum of squares, and as such it is equivalent to
mean variance. Ratios of variance can be interpreted as measuring the uncer-
tainty with which the target is observed within in each frequency band, at each
time frame, and thus the power partition offers the opportunity of interpreting
observations according to a statistical model.

9 RELATION WITH AUDITORY MODELS

Barlow (1961, 2001) suggested that the role of sensory relays is to recode
incoming patterns in a way that minimizes numbers of neural discharges, and
thus metabolic cost, on average. Cancellation fits this description. A “neural
cancellation filter” (e.g. de Cheveigné 1993a) minimizes its output for a peri-
odic input, and at the same time characterizes the regularity of the input
pattern.

Durlach’s (1963) equalization-cancellation (EC) model proposed that pat-
terns from one ear are subtracted from those from the other (after delay and
amplitude scaling) to suppress correlates of a spatially localized jammer.
Culling and Summerfield (1995, Culling et al., 1998) proposed a “modified
EC” model in which such cancellation occurs independently within peripheral
filter bands. In this model, EC parameters are determined from information
within a band, and may differ from band to band. See also Breebart et al.
(2001) and Akeroyd and Summerfield (2000).

A monaural “harmonic cancellation” model was proposed by de Chev-
eigné (1993a) and found to account for behavioral data on concurrent vowel
identification (de Cheveigné, 1997). In particular it accounted for conditions
where one vowel is much weaker than the other, for which other explanations
fail. A “cancellation model of pitch perception” was proposed by de Chev-
eigné (1998). A model that explains pitch shifts of inharmonic partials
(Hartmann and Doty, 1996) was proposed by de Cheveigné (1999a). Given
the general functional usefulness of cancellation (as argued in this paper) and
the fact that some of these models account for effects that no other model
accounts for, it is likely that the cancellation strategy is used within the audi-
tory system.
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Understanding auditory processes is goal that is worthy in itself. It is also a
source for insight into effective processing techniques, and a great opportu-
nity for interaction of mutual benefit between scientific and technological
fields. To constrain and develop such useful models, there is strong need for
more data on natural systems via behavioral, physiological, and imaging
techniques.

10 RELATION WITH OTHER TECHNIQUES

10.1 Time-Frequency Decomposition

Many efforts have been devoted to computational models of ASA (e.g.
Cooke, 1991; Brown, 1992; Ellis, 1996). A common approach is to assume a
spectrotemporal decomposition of each sensor signal over a filterbank, group-
ing together of filter bands that belong to the target, and their segregation
from bands that belong to other sources. Bands are assigned according to a
time-frequency “map” that looks like a checkerboard.

The idea comes from the ASA rules reviewed by Bregman (1990), them-
selves based on the principle of peripheral frequency analysis that originated
with Helmholz (1877). Strict Helmholtzian doctrine would have it that the
outputs of the bands collectively form a spectrum of slowly-varying values
(excitation pattern). Recent thinking, both in auditory models and in CASA
systems, allows for each band to carry a temporal structure, that may be used
to decide how the band is assigned. Early examples are the two-channel sys-
tem of Lyon (1983), that drew on Jeffress’s (1948) localization model to
segregate bands according to source bearing. Another is the single-channel
system of Weintraub (1985) that drew on Licklider’s pitch model to segregate
bands according to source periodicity. More recent examples are the CASA
systems of Cooke (1991), Brown (1992) or Ellis (1996). Decomposition into
time-frequency “pixels” is also used in missing-feature techniques (Cooke et
al., 1997; Lippmann and Carlson, 1997; Palomäki et al., 2001), statistical
methods for time-frequency pixel assignment (Roweis, 2000, 2003), or multi-
ple       estimation (Wu et al., 2003).

There is considerable variety among systems based on time-frequency
analysis. Frequency analysis may be performed by a bank of “auditory” fil-
ters, by a standard short-term Fourier transform, or by a more exotic time-
frequency transform. The output is either a slowly-varying spectrum, or a set
of rapidly varying temporal waveforms filtered from the input waveform. At
each instant a band is assigned entirely to a source (“black and white” map) or
only partially (“gray-scale” map). Common to all systems is that bands are
“atomic” in the sense that they are not analyzed further.
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The effectiveness of the time-frequency approach is limited by the Gábor
relation: As an example, the response of a 1 ERB wide
gammatone filter centered at 1 kHz is only 20 dB down (1 % power) at 200 Hz
away from the peak. Its impulse response is 20 dB down at 6 ms from the time
of peak response. Spectral resolution can be improved only at the expense of
temporal resolution, and vice-versa, and so jammer rejection cannot be
perfect.

Cancellation is complementary with time-frequency analysis. In ideal con-
ditions it offers perfect jammer rejection, but these ideal conditions may
prevail only within a limited time-frequency region. Cancellation cannot be
subsumed by time-frequency analysis, but the two approaches are comple-
mentary and may usefully be combined.

10.2 Enhancement

Enhancement is the mirror image of cancellation. Rather than using jam-
mer structure, target structure (periodicity, spatial position) is used to enhance
a structured target relative to an unstructured background. Enhancement
schemes are much more common in the literature than cancellation. However
the SNR improvement that they provide is generally limited. For delay-and-
add beamforming it is 6 dB for two sensors, and greater improvement requires
more sensors. For harmonic enhancement it is 6 dB for a simple comb-filter,
and greater improvement requires filters with longer impulse responses (de
Cheveigné, 1993a, Appendix A). Cancellation is distinct from (and comple-
mentary to) enhancement.

10.3 ICA

Independent component analysis and cancellation are related. The objec-
tive of ICA is to produce outputs that are statistically independent. This can
happen only if each output depends on one source only, a goal that is attained
if contributions of all other sources are suppressed. Thus, the objectives of
ICA and cancellation are equivalent, even if the means to attain them are dif-
ferent. The links between ICA and cancellation should be examined more
deeply, and it may eventually turn out that ICA and cancellation can be sub-
sumed within a common framework.

It is interesting to note the similarity between Culling and Summerfield’s
mEC model, and recent frequency-domain ICA techniques (e.g. Anemueller,
2001). Both are congruent with the notion of “local” cancellation described in
this paper.
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11 COMPUTATIONAL CONSIDERATIONS

Estimation of structure parameters using cancellation is expensive,
because (except in special cases) the parameter space must be searched
exhaustively. Joint estimation of several parameters is particularly expensive.
Techniques to reduce the cost are described in de Cheveigné (2001).

12 PUTTING IT ALL TOGETHER

Here are a three example scenarii, of varying complexity, of how cancella-
tion might fit together with other techniques to solve a problem of practical
interest.

ASR system with single channel input. Cancellation is used for sev-
eral purposes: (1) for an isolated voice, to provide
spectra, and a time-frequency “harmonicity map” as features for
ASR, (2) for two concurrent voices, to provide “glimpses” of both
voices, together with time-frequency reliability maps for both. These
are used by the ASR stages to constrain models of one or more speak-
ers. Spectral distortion caused by cancellation is compensated in the
ASR stage by adjusting spectral models.

Active multimodal recording system. A room (conference room or
concert hall) is equipped with a distributed network of switchable
microphones (or robot controlled microphones) and video cameras.
Cancellation is used to analyze the acoustic structure of signals pro-
vided by the microphones. The harmonic structure of sources (voices,
instruments) is used to facilitate the acoustic analysis. Its result feeds
a spatial model that is also informed by video and any other relevant
information. The spatial model is used to switch or move micro-
phones, to optimize pickup and segregation of each source of interest,
or to produce a visual display of use to the sound engineer. Cancella-
tion analysis reveals that scene structure information is incomplete
(for example intersensor correlation may be good only at note onsets,
for which the anechoic propagation approximation is good). Incom-
plete information is interpolated using missing data techniques to
constrain models. Models are then used in the next stage to interpo-
late across missing parts, in the event that the system was incapable
of recovering them. Models at all stages, including ASR, can be
merged and fit jointly (e.g. Nakamura and Herakleous 2002). On the
basis of models, it may be possible to resynthesize high quality
speech or music sounds (e.g. Kawahara, this volume).
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Multimedia indexing and search. A major problem in dealing with
massive volumes and fluxes of multimedia data, as they occur today,
is indexing and search. The concept of metadata has been invented
for that purpose. Arguably the most useful kind of metadata are con-
tent-based, as they are cheap, reliable and ubiquitous (as compared to
text and other manually created metadata that are expensive and
therefore often absent). Content-based metadata can be used to map
out redundancies (e.g. copies of same data) and constrain other forms
of metadata. They are essential for efficient search.

For mixtures of audio sources, it would be desirable that the metadata
reflect the sources enough to support searching for individual sources
within the metadata that label the mixture. It is usually not possible to
split audio data into streams and label each stream. However it is pos-
sible to design content descriptors so that they maximize information
about component sources. Cancellation is useful for such labeling. As
an example, a single channel containing several periodic sources can
be processed so as to obtain (a) estimates of the periods, and (b) a
periodicity-based decomposition of power and power spectra. It is not
necessary that segregation be perfect: anything that allows pruning of
the search space is a sufficiently useful goal.

The power spectrum decomposition is also a decomposition of vari-
ance, and thus it fits well with statistical models that support hierar-
chical search (de Cheveigné 2002). It also fits well with the scalable
metadata concept that has been integrated into the audio part of the
MPEG-7 standard (de Cheveigné 1999b; ISO/IEC JTC 1/SC 29,
2001). The additive nature of variance implies that “decomposed”
and “standard” descriptions are compatible. Together with the scal-
ability of metadata structures (also based on variance), this ensures
interoperability and flexibility of the metadata descriptions.

13 CONCLUSION

Cancellation is a useful “ingredient” to solve the problems of speech sepa-
ration and acoustic scene analysis. Other essential ingredients are time-
frequency analysis, models, and missing-data techniques. The strength of can-
cellation is that it can provide, in ideal conditions, infinite jammer rejection.
Its weakness is that these ideal conditions may occur only locally, in time and/
or frequency, hence the need for models and missing-data techniques. This
approach should benefit from future progress in signal processing techniques
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such as beamforming and ICA, and also from being cast into a systematic
probabilistic framework. There are arguments to say that neural processing in
natural organisms is in part based on cancellation. More basic knowledge is
needed about the nature of these mechanisms, their anatomy and physiology,
and the behavior that they allow.
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Chapter 17

Informational and Energetic Masking Effects in
Multitalker Speech Perception

Douglas S. Brungart
Air Force Research Laboratory
douglas.brungart@wpafb.af.mil

1 INTRODUCTION

When a speech signal is obscured by a second simultaneous competing
speech signal, two types of masking contribute to overall performance. Tradi-
tional “energetic” masking occurs when both utterances contain energy in the
same critical bands at the same time and portions of one or both of the speech
signals are rendered inaudible at the periphery. Higher-level “informational
masking” occurs when the signal and masker are both audible but the listener
is unable to disentangle the elements of the target signal from a similar-sound-
ing distracter. Because “informational masking” is restricted to cases where
the masking signal is similar to the target signal, it has a much greater impact
on performance when a speech signal is masked by speech than it does when a
speech signal is masked by noise. Furthermore, its effects depend specifically
on the characteristics of the target and masking speech signals. This brief
chapter outlines the results of some recent experiments we have conducted in
our laboratory that have examined the role that informational masking plays
in speech perception and attempted to isolate the effects that informational
and/or energetic masking have on multitalker listening.

2 METHODS

All of the experiments described in this chapter were conducted using the
Coordinate Response Measure (CRM). In the CRM task, a listener hears one
or more simultaneous phrases of the form “Ready, (Call Sign), go to (color)
(number) now” with one of eight call signs (“Baron,” “Charlie,” “Ringo,”
“Eagle,” “Arrow,” “Hopper,” “Tiger,” and “Laker”), one of four colors (red,
blue, green, white), and one of eight numbers (1-8). Researchers at the Air
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Force Research Laboratory have made a corpus of CRM speech materials
available to the public on CD-ROM. This corpus contains all 256 possible
CRM phrases (8 call signs X 4 colors X 8 numbers) spoken by each of eight
different talkers (four male, four female). In the experiments described here,
the stimulus always consisted of a combination of a target phrase, which was
randomly selected from all of the phrases in the corpus with the call sign
“Baron,” and one or more masking phrases, which were randomly selected
from the phrases in the corpus with different call signs, colors, and numbers
than the target phrase. The listener’s task was to listen for the phrase contain-
ing the preassigned target call sign “Baron” and respond with the color and
number combination contained in that phrase. These stimuli were presented
over headphones at a comfortable listening level (approximately 70 dB SPL),
and the listener’s responses were collected either by using the computer
mouse to select the appropriately colored number from a matrix of colored
numbers on the CRT or by pressing an appropriately marked key on a stan-
dard computer keyboard.

3 FACTORS THAT INFLUENCE INFORMA-
TIONAL AND ENERGETIC MASKING IN
SPEECH PERCEPTION

Figure 17.1 shows performance in the CRM listening task with five differ-
ent maskers: speech-spectrum-shaped noise that has been amplitude-
modulated to match the intensity fluctuations that occur in normal speech
(TM); continuous speech-spectrum-shaped noise (TN); and a different-sex,
same-sex, and same-talker speech signals (TD, TS and TT, respectively). The
results shown in this figure highlight three important characteristics of infor-
mational masking in speech perception:

The difference between speech-in-noise and speech-on-speech mask-
ing; The two noise conditions shown in Figure 17.1 (TM and TN) are
fundamentally different from the speech conditions in two important
ways. First, performance with the noise maskers tends to remain at a
high level at much lower SNR levels than performance with the
speech maskers. Second, once the SNR does become low enough to
degrade performance with the noise maskers, performance degrades
monotonically and precipitously as the SNR is further reduced. In
contrast, performance with the speech maskers (TD, TS, and TT)
starts to degrade at much higher SNRs but degrades much more grad-
ually, especially at negative SNR values.

1.



Chapter 17: Masking Effects in Multitalker Speech Perception 263

Figure 17. 1.Color and number identifications as a function of signal-to-noise ratio for five
types of masking signals: TM- envelope modulated speech-shaped noise; TN-continuous
speech shaped noise; TD- a different-sex masking phrase from the CRM corpus; TS- a same-
sex masking phrase from the CRM corpus; and TT- a masking phrase from the CRM corpus
spoken by the same talker used in the target phrase. Adapted from Brungart (2001).

The importance of voice characteristics: Performance in the CRM
task is much better with a different-sex interfering talker (TD) than
with a same-sex interfering talker (TS), and much better with a same-
sex interfering talker than with a masking phrase spoken by the same
talker used in the target phrase (TT). Because informational masking
depends on the relative similarity of the target and masking voices,
differences in voice characteristics can be a powerful cue for segre-
gating the target and masking speech signals.

The advantages of level differences: In contrast to performance with a
noise masker, which degrades monotonically as the SNR decreases,
performance with a same-sex speech masker tends to plateau around
0 dB SNR. The reason for this plateau in performance is that listeners
are able to use differences in the levels of the two talkers to distin-
guish the two competing voices and selectively attend to the quieter
of the two talkers in the stimulus. Thus, especially in the same talker
(TT) condition, listeners may do better at negative SNR values
because they can identify the target as the quieter talker in the stimu-

2.

3.
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lus. In contrast, when the 0 dB SNR is 0 dB in the TT condition, the
prosodic and coarticulative features that connect the call sign and
color and number combination in the target phrase are the only avail-
able features to allow the listeners to discriminate between the color
and number coordinates in target and masking voices.

Figure 17.2 shows how performance in the CRM listening task changes as
additional masking talkers are added to the stimulus. When no competing
talkers were present in the stimulus, performance was near 100%. The first
competing talker reduced performance by a factor of approximately 0.4, to
62% correct responses. The second competing talker reduced performance by
another factor of 0.4, to 38% correct responses. And the third competing
talker reduced performance by another factor of 0.4, to 24% correct
responses. Thus we see that CRM performance in a diotic multitalker speech
display decreases by approximately 40% for each additional same-sex talker
added to the stimulus.

Figure 17.2. Performance in a diotic CRM listening task with 0, 1, 2, or 3 interfering same-sex
talkers.

Figure 17.3. Performance in a CRM listening task with 0, 1, 2, or 3 interfering same-sex
talkers, presented diotically or spatially separated by 45 degrees.
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In general, informational masking is reduced whenever the attributes of
the competing talkers are made more distinct in one or more perceptual
dimensions. One very powerful way to distinguish the competing talkers in a
multitalker stimulus is to spatially separate the apparent locations of the com-
peting talkers. Figure 17.3 shows performance in the CRM task with 1, 2, or 3
competing talkers both in the diotic condition, where the talkers were pre-
sented from the same location, and in a spatial condition, where the talkers
were spatially separated 45 degrees apart in azimuth. In the case with one
interfering talker, spatial separation increased performance by approximately
25 percentage points. In the cases with two or three interfering talkers, spatial
separation nearly doubled the percentage of correct responses. These results
clearly illustrate the substantial decreases in informational masking that spa-
tial separation in azimuth can produce in multitalker listening.

Figure 17.4 shows a final example of purely informational masking in
dichotic speech perception. In this experiment, the normal two-talker same
sex (TS) CRM speech stimulus was presented to the right ear. However, in
this case, an additional speech noise masker was presented to the left ear (as
indicated in the legend). The listeners were instructed to ignore the left ear
and focus only on the right ear. The results show that a speech signal in the
left ear interfered substantially with performance even when it was presented
at a level 15 dB below the level of the target talker in the right ear, but that a
noise signal in the left ear did not interfere even when it was presented at a
level 20 dB louder than the target speech signal. In this case, the interference
that occurred in the contralateral speech conditions was purely informational
and had no energetic component. Ongoing research in our laboratory is now
attempting to find other ways to isolate the informational and energetic com-
ponents of speech on speech masking. Our hope is that this will result in a
more complete understanding of the informational masking that occurs in
speech and, in the long term, a significant improvement both in the audio dis-
plays that are used for multichannel speech communications and in the ability
of automatic speech processing systems to process multitalker speech signals.
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Figure 17.4. Performance in a dichotic CRM listening task with the target and one same-sex
talker presented in the right ear and a masking signal (indicated by the legend) presented in the
left ear.

References

Brungart, D.S. and Simpson, B.D., 2003, Within-ear and across-ear interference in a cocktail-
party listening task: effects of masker uncertainty. In press, Journal of the Acoustical
Society of America.

Brungart, D.S. and Simpson, B.D., 2002, Within-ear and across-ear interference in a cocktail-
party listening task. Journal of the Acoustical Society of America, 112(6), 2985-2905.

Brungart, D.S. and Simpson, B.D., 2002, The effects of spatial separation in distance on the
informational and energetic masking of a nearby speech signal. Journal of the Acous-
tical Society of America, 112(2), 664-676.

Brungart, D.S., Simpson, B.D., Scott, K.R., and Ericson, M.A., 2001, Informational and ener-
getic masking effects in the perception of multiple simultaneous talkers. Journal of
the Acoustical Society of America, 110(5), 2527-2538.

Brungart, D.S., 2001, Evaluation of speech intelligibility with the Coordinate Response Mea-
sure. Journal of the Acoustical Society of America. 109(5), 2276-2279

Brungart, D.S., 2001, Informational and energetic masking effects in the perception of two
simultaneous talkers. Journal of the Acoustical Society of America, 109(3), 1101-
1109.



Chapter 17: Masking Effects in Multitalker Speech Perception 267

Darwin, C.J., Brungart, D.S., and Simpson, B.D., 2003, Effects of fundamental frequency and
vocal-tract length changes on attention to one of two simultaneous talkers. Journal of
the Acoustical Society of America, 114(5), 2913-2922.

Ericson, M.A., Brungart, D.S., and Simpson, B.D., 2003, Factors that influence intelligibility in
multitalker speech displays. In press, International Journal of Aviation Psychology.

Kidd, G., Mason, C.R., Arbogast, T.L., Brungart, D.S., and Simpson, B.D. (2003) Informa-
tional masking caused by contralateral stimulation. Journal of the Acoustical Society
of America, 113(3) 1594-1603.



This page intentionally left blank



Chapter 18
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1 INTRODUCTION

Separation of speech signals by humans is one of the auditory-nervous
processes we all count on to occur automatically and efficiently. Fortunately,
this is mostly the case, as long as the individual has no, or at most mild, hear-
ing loss and he/she is relatively young. This phenomenon has been termed
“the cocktail-party effect” (CPE) by Cherry (1953). Deficient speech separa-
tion – a CPE deficit – is observed in people with moderate-to-severe
sensorineural hearing loss regardless of age (Souza and Turner 1994), but also
in elderly individuals regardless of their peripheral hearing sensitivity and
regardless of whether or not the target and the (babble-) masker speech
sources are spatially separated (Gelfand et al., 1988; Divenyi and Haupt
1997). During the last 25 years, much effort has been devoted to investigate
the CPE, its characteristics, its component and underlying processes, its fail-
ures in certain class of listeners—especially the elderly—as well as
computational models emulating or superseding the human biological system
that allows it to take place. To this date, however, we still have not reached
the point at which the processes responsible for CPE and the causes of its dys-
functions would be fully understood, or at which computational means of
separating simultaneous speech signals would be reliable to a degree permit-
ting the machine to take over when humans fail or when they are not even
present.

Previous work on the perceptual separation of simultaneous speech
sources in our laboratory has been aimed at trying to understand the mecha-
nisms that play a role in the CPE in the young, and in its decline in the elderly.
The focus of much of this work has been identification of the significant
dimensions of the phenomenon, such as perceptual segregation of sources—
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“streams,” as they are called following the terminology by Bregman (1990)—
based on differences with regard to spatial location, fundamental-frequency
pitch, formant frequency, and/or syllabic (or subsyllabic) rhythm. For these
studies, we used simultaneous pairs of brief signals (typically shorter than 500
ms) that retained only very basic characteristics of speech: f0, a single for-
mant, temporal envelope pattern. One surprising finding of this research was
that spatial separation of two streams provided only moderate advantage even
for experienced young listeners in a stream segregation task (Divenyi 2001).
This finding places a heavy emphasis on speech separation performed without
the benefit of spatial cues, i.e., in a single spatial channel—as when listening
to an amalgam of voices through a single loudspeaker. To successfully per-
form this task, the listener must rely on other cues, e.g., pitch difference,
spectral pattern difference, and temporal pattern difference between the con-
current speech streams.

But how do simultaneous streams of speech interfere with one another?
For the situation of a single target speaker’s speech embedded in the babble of
six to twelve other speakers, one is tempted to attribute interference to mask-
ing. However, since interference also occurs by the presence of a single
unwanted source that allows the target to remain audible at least part of the
time and in part of the spectrum, traditional, or energetic, masking has been
shown to account for not more than part of this interference. As Brungart
describes in chapter 17 in the present book, much of the masking in these situ-
ations is informational: the target may be above energetic-masked threshold
but the information therein is fully or partially blocked by the presence of
similar, although not identical, information in the interferer. One reason for
the existence of informational, in addition to energetic, masking in speech is
that, according to its most widely accepted definition, energetic masking
implies stationary signals and maskers. Speech, on the other hand, is quintes-
sentially dynamic, characterize by Plomp as a signal “slowly varying in
amplitude and frequency” (Plomp 1983). Thus, to uncover the nature of
speech-by-speech interference, it will be necessary to look at its dynamic fea-
tures. By features, we mean spectro-temporal acoustic patterns, that may or
may not coincide with phonetic or phonological features, and by dynamic we
mean that these patterns are undergoing slow (2 to 20-Hz) amplitude modula-
tion (AM) and/or frequency modulation (FM).

In our investigations of properties of the interference, we first decided to
focus our attention on only one given feature in the target stream in the pres-
ence of interference by the same feature in another – the distractor stream.
The specific question we asked was: how resistant are we to interference
when identifying a pattern of slow AM or FM fluctuations? The question cast
in psychophysically tractable terms is: in a target stream containing a pattern
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of a given feature, what degree of informational masking would be produced
by a simultaneously present distractor stream that contains a random sequence
of the same feature?

In the listening experiments described in the following paragraphs, two
such features were investigated: syllabic-rate rhythmic pattern (AM) and for-
mant excursion pattern (FM).

2 EXPERIMENT 1 – METHODS

In order to answer the general question, both the problem and the signals
had to be stripped down to their most essential characteristics. The speech tar-
get became a harmonic complex tone of a given fundamental frequency
with the frequency of its components limited between 400 and 3,300 Hz. The
interfering distractor was another harmonic complex with components
between the same spectral limits but an clearly different from that of the
target (either by a factor of 0.27, i.e., close to a Major third in music, or a fac-
tor of 0.77, close to a minor seventh). The lower of the two fundamental
frequencies was always 107 Hz, i.e., an corresponding to an average male
voice.

Experiment 1 addressed the question of the way listeners identify a slow
rhythmic target pattern consisting of AM bursts in the presence of a distractor
consisting of similar AM bursts but separated by random time intervals. The
objective of the experiment was to assess quantitatively informational mask-
ing of a syllabic rhythmic pattern in one stream by a sequence of random,
arrhythmic bursts in another stream. The target pattern was either a “o-o—o”
amphibrach or a “o—o-o” dactyl, differing from a rhythmically regular “o–o–
o” spondee by 10 to 50 percent, depending on the condition. The carrier sig-
nals of the target and the distractor were the sinusoidal complexes described
in the preceding paragraph. Informational masking was assessed in one of two
ways. In experiment 1a, as illustrated in Figure 18.1, the degree of irregularity
of the pattern and the absolute level of the distractor were fixed; the presenta-
tion level of the distractor was 87 dB SPL while that of the target was
adaptively changed, in a three-down-one-up two-alternative forced-choice
paradigm, to track the target level yielding a 79.4 percent performance level
(Levitt 1971). The interval separating the onsets of the first and the last
(=third) pattern burst was 800 ms, i.e., the average duration between consecu-
tive burst onsets was 400 ms. In experiment 1b, the levels of the target and the
distractor were held constant (80 dB and 74 dB SPL, respectively) and it was
the degree of rhythmic irregularity of the pattern that was adaptively varied.
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Figure 18.1. Schematic diagram of the stimulus of experiment 1a. The target pattern stream, an
amphibrach or a dactyl, is shown in the top row and the distractor stream in the bottom row. In
the condition shown, each of the two patterns departs from a regular spondee rhythm by 20%
(=0.1/0.5). Each vertical pulse represents a burst of complex sinusoid 40 ms in duration. The
two streams are presented mixed in the same spatial channel. The listener’s task is to identify
the target pattern in the random distractor. The level of the target is adaptively varied from trial
to trial to track the level at which identification is 79.4% correct.

In this sub-experiment, the average time interval between consecutive pattern
bursts was 100, 200, or 400 ms. Throughout Experiment 1, whether the target
was assigned the higher and the distractor the lower, or vice versa, was var-
ied from condition to condition.

Six young adults with normal hearing (average age=22±3.4 yrs) and seven
elderly individuals (average age=68.7±7.1 yrs) with mild-to-moderate hearing
loss served as paid listeners in the experiment. Hearing loss of the elderly sub-
jects was 27.8±19.8 dB at 4 kHz; their mean pure-tone average of four
frequencies between 500 and 4 000 Hz was 20.6±14.2 dB. The young subjects
had extensive experience (6 months or more) as subjects in psychoacoustic
experiments. The elderly subjects had at least one month of experience in sim-
ilar experiments. The subjects were seated in a sound-attenuated room and
listened to runs of stimuli under diotically wired earphones. One run consisted
of one adaptive threshold determination. Trial-by-trial visual feedback was
provided.
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Figure 18.2. Masked thresholds obtained in experiment 1a for the elderly and the young
subjects. The data clearly show that informational masked thresholds are higher than energetic
masked thresholds: it is easier to detect than to discriminate the rhythmic patterns in the target.
Having the target in the higher- and the distractor in the stream yields somewhat lower
masked thresholds than the opposite. Finally, masked thresholds — both energetic and infor-
mational — increase with age.

2.1 Experiment 1 – Results

Results for the elderly and young listeners are illustrated in Figure 18.2 for
experiment 1a, in which the level of masked thresholds (both energetic and
informational) of the rhythmic patterns was assessed. The fundamental fre-
quency difference between target and distractor streams was just a little shy of
one octave; in other words, the pitch of the higher stream was comparable to
that of a woman’s and that of the lower to a man’s voice. Thresholds for infor-
mational masking were higher than for energetic masking — especially for
the younger subjects. This difference is mainly attributable for inorderly high
energetic masking thresholds obtained for elderly listeners, which is likely to
be the result of difficulty by these subjects to perceptually segregate the target
from the distractor stream. In other words, the elderly don’t seem to be able to
correctly assign a given burst to the correct streak (target or distractor).

But informational masking, in addition to requiring a higher intensity for
the target in order to be discriminated, can also influence the degree of irregu-
larity on the basis of which discrimination of the two target patterns
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(amphibrach and dactyl) can be performed. The degree of irregularity neces-
sary to achieve threshold performance was assessed in experiment 1b, the
results of which are shown in the two panels of Figure 18.3 separately for the
elderly (left panel) and for the young (right panel) subjects. Looking at the
young subjects’ data, it becomes apparent that their discrimination of rhyth-
mic irregularity approaches the limits of auditory time discrimination (about 6
percent, see Divenyi and Danner 1977): for all conditions except one (target
in low stream, target-distractor stream difference small [=0.27], sequence
rapid [average separation of 100 ms between consecutive bursts]), at which
irregularity discrimination reached 15 percent, irregularities between 4 and 8
percent could be reliably discriminated. In contrast, the condition most diffi-
cult for the young to discriminate by the young could not be discriminated by
the elderly at any irregularity, no matter how large. The irregularity thresholds
obtained for the elderly were at best between 15 and 20 percent but increased
to 42 to 50 percent when the sequences were rapid. Just as in Experiment 1a,
target pattern discrimination was generally better when the of the target was
higher than that of the distractor, and when the fundamental frequency separa-
tion was relatively large.

Figure 18.3. Results of Experiment 1b: percent irregularity at the 79.4 percent discriminability
threshold (on the ordinate) obtained for the elderly (left panel) and the young (right panel)
subjects. Note that the ordinate scale for the young is 1/3 of the scale for the elderly. The
abscissa displays the average time interval between consecutive bursts. Results for both narrow
(0.27) and wide (0.77) fundamental frequency separation between target and distractor are
illustrated for the target having the high and the distractor the low as well as the opposite.
Discrimination of irregularity larger than 60 percent is not doable because two of the bursts
become too close for the subject to hear them as two for the most rapid rhythmic sequence
condition. The target and distractor levels were held constant at 80 and 74 dB SPL,
respectively.
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3 EXPERIMENT 2 – METHODS

Perceptual segregation of pairs of simultaneous patterns differing in fun-
damental frequencies and formant values is easier when the formant
frequencies dynamically change (Divenyi et al., 1997). The objective of
experiment 2 was to measure informational masking of slowly changing FM
pattern imposed on a single formant in a complex sinusoidal carrier, by a dis-
tractor consisting of continuously up-down changing formant frequency, as
illustrated in Figure 18.4. The distractor’s formant frequency excursion was
twice that of the target pattern’s formant frequency excursion and was started
at a phase that randomly changed from trial to trial. The duration of the
upward and downward formant transitions was 100 ms in both the target and
the distractor. In the target, the up-down and the down-up glide patterns were
preceded and followed by a steady-state portion 100 ms in duration. The fun-
damental frequency of the target and that of the distractor were different and
had the same values as those used in experiment 1. Again, the target could be
presented at the higher and the distractor at the lower, or vice versa,
depending on the experimental condition. The subject’s task was to identify
the formant glide pattern as either up-down or down-up. The intensity level of
the distractor was held constant at 67 dB SPL and that of the target was varied
adaptively to track the one at which the performance reached 79.4 percent
correct in a two-alternative forced-choice paradigm. In experiment 2a ener-
getic and informational masking of the target by the distractor were compared
for a constant 60 percent target formant frequency excursion. In experiment
2b only informational masking was measured for formant frequency excur-
sions ranging from 10 to 60 percent.

3.1 Experiment 2 – Results

Unsurprisingly, as illustrated in Figure 18.5, energetic masking of the for-
mant glide pattern by a 67 dB SPL distractor was very ineffective: up to
distractor levels of close to 60 dB SPL, target patterns are detectable near their
threshold in quiet (about 15 dB SPL). This happens because the spectrotem-
poral patterns of the two signals being quite different, the target and the
masker slip in and out spectral regions with masker energy large enough to
cause masking. Also, very similarly to what we observed in experiment 1a,
informational masking thresholds are much more elevated than energetic
masking thresholds: by between 12 and 19 dB for young and by as much as 35
to 40 dB for elderly listeners.
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Figure 18.4. Schematic spectrogram-type diagram of the stimulus in experiment
2a.The lines must be understood as representing peaks of a single resonance imposed
on a complex sinusoidal carrier having components between 400 and 3300 Hz but
different fundamental frequencies for the target pattern and for the distractor. The
level of the distractor was constant at 67 dB SPL, whereas that of the target pattern
was varied adaptively to track one at which the target pattern could be identified 79.4
percent at a time. The frequency swing, or excursion, of the glide was constant at 60
percent. The stimulus in experiment 2b was similar, except that a series of different
frequency excursion values between 10 and 60 percent was explored.

Figure 18.5. Results of Experiment 2a: Energetic masking corresponding to the 79.4
percent detection threshold (on the ordinate) obtained for the elderly and the young
subjects for the target in the stream and the distractor in the stream (left
panel) and the opposite (right panel). The abscissa displays the level of the distractor.
Results are for the wide (0.77) fundamental frequency separation between target and
distractor and for the 60 percent formant excursion only. The two data point pairs cir-
cled indicate, for the comparison’s sake, informational masking thresholds for
the 67-dB SPL distractors.
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Figure 18.6. Results of Experiment 2b: informational masking corresponding to the 79.4
percent discrimination threshold (on the ordinate) obtained for the elderly and the young
subjects with the target in the stream and the distractor in the stream (the two
graphs on the left) and the opposite (the two graphs on the right). The abscissa displays formant
frequency swing (excursion) expressed in percent of the starting and ending formant frequency.
Results are shown both for the narrow (0.27) and the wide (0.77) fundamental frequency
separation between target and distractor.

Again, targets in the low stream are more prone to be masked than tar-
gets in the high stream. Thus, results of experiments 1a and 2a are
internally consistent.

Informational masking as a function of formant glide excursion was exam-
ined in experiment 2b with the results illustrated in Figure 18.6. The extent of
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formant excursion is inversely related to the amount of informational mask-
ing, as expected. However, the exact numbers are surprising. For one, young
listeners are able to perform the glide pattern discrimination task with glide
intensities at or below the intensity of the distractor, even when the pattern
and distractor fundamental frequencies are close to each other and the swing
is only 10 percent. At large frequency swing values, they can discriminate the
glide patterns even at intensities 20 to 30 dB below the one of the distractor.
Although the formant swing-informational masking functions obtained for the
elderly listeners are very similar to those of the young, the are shifted upward
by about 15 dB in the difficult conditions to as much as 25 to 30 dB in some
of the easier conditions, indicating that perceptual separation of a target glide
pattern from a distractor consisting of continuous up-down formant transi-
tions becomes impaired in aging even when the pattern and the distractor are
presented well above audibility thresholds.

4 DISCUSSION

We have examined perception of a speech analog target having a given
fundamental frequency, presented simultaneously with a distractor having a
different fundamental frequency. In the first experiment, the target was a
slow-AM burst pattern (mimicking syllabic fluctuation) and the distractor a
random sequence of similar bursts. In the second experiment, the target was a
slow-FM formant glide pattern (mimicking vowel-to-vowel transitions) and
the distractor several cycles of FM formant glides presented at a random start-
ing FM phase. First, we saw that, at low target-to-distractor (T/D) ratios, the
detectability of the target was masked. We termed the T/D ratio at which the
target was just detectable the threshold of energetic masking. However, in
order for the listeners to be able to discriminate the target pattern, the T/D
ratio had to be increased. Since in those cases the interference by the distrac-
tor affected the perception of information carried by a given dimension of the
target (envelope fluctuation or formant trajectory) rather than its audibility,
we termed the T/D ratio at which the target pattern was just discriminable the
threshold of informational masking. The basic distinction between the two
types of masking is that the masker in informational masking, i.e., the distrac-
tor, has information that the subjects easily confuse with similar information
in the target. In other words, masking takes place because the target stream
and the distractor stream are being imperfectly segregated by the listener. As
opposed to energetic masking that suppresses detectability by way of overlap-
ping spectrotemporal fields between the target and the distractor,
informational masking is a process that cannot be explained by peripheral
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interference. Attributing the interference seen in the present informational
masking results to central processes is in agreement with conclusions by other
investigators (e.g., Kidd et al., et al. 1998; Oh and Lutfi 1999; Brungart et
al., 2001), albeit our definition of the difference between energetic and infor-
mational masking is not strictly identical to that found in the literature.

We saw that for normal-hearing young listeners, the T/D ratio at which the
target AM or FM patterns can be identified is surprisingly low: typically -30
to -15 dB depending on the condition, i.e., somewhat higher when the target
and distractor streams are close in fundamental frequency or when the AM
fluctuation is rapid or the FM fluctuation depth is low. However, the T/D ratio
necessary for pattern identification dramatically increases, to between 0 and
+10 dB, for elderly listeners not only with mild-to-moderate hearing loss but
also those with no hearing loss at all. Since these listeners also exhibit deficits
in the understanding of speech in “cocktail-party” situations, such as amidst
babble noise or in reverberant environments, the informational masking defi-
cit and the CPE deficit reflects a parallel or could possibly signify a causal
relationship between the underlying processes. Age effects observed for other
types of informational masking (e.g., Kidd et al., 2002) may also be related to
the same deficits.

What do these results mean for speech separation in general? First, we
want to point out that the two types of targets (and distractors) investigated
represent two among the dynamic processes that speech is built on. As we
said earlier, speech is defined as a process slowly varying in amplitude and
frequency; the AM and FM changes in the target, although oversimplified
when compared to real speech, address characteristics that are most important
in speech as well as speech separation. When two speech streams, each inde-
pendently varying along the amplitude and frequency dimensions, are
presented simultaneously, their mutual interference will also change in time,
just as two spectrograms plotted on top of one another will have spectrotem-
poral areas where speech can be “glimpsed” at – as described by Cooke in
chapter 21 in the present book. Our results help specify some of the paramet-
ric constraints under which such “glimpsing” will be successful, and others
under which it will fail. Generally speaking, the negative signal-to-noise
ratios at which target identification remains successful indicates that the
dynamic changes themselves may serve as pointers (in spectrum and time)
that help the perceptual apparatus find the missing spectrotemporal informa-
tion when it is covered by an interfering signal. As such, the present findings
could provide one piece of suggestion for improving computational auditory
scene analysis (CASA) results: the direction of change in amplitude and/or
frequency could be used to recover missing data.
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While the above suggestion puts a definitely positive spin on the present
results, we cannot ignore the unfortunate fact that the aging process puts a
serious dent into the human ability to separate dynamically changing signals.
Although no known remedy exists for this dysfunction, it is our hope that
computational schemes can be applied for the design of a device that will help
re-integrate in Society the vast elderly population suffering from CPE
disorder.
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1 INTRODUCTION

Computational auditory scene analysis (CASA) (Cooke, 1993) and visual
scene analysis have been researched from two separate communities, namely
CASA and Computer Vision. Separation of audio sources can be very useful
for visual scene analysis. Some visual scene analysis techniques can also be
used to help audio separation. Recently many machine learning algorithms
(Jojic and Frey, 2001; Tao et al., 2000; Wilson and Bobick, 1999; Frey and
Jojic, 1999; Jojic et al., 2000; Williams and Titsias, 2002; Frey and Jojic,
2003) have been shown to be useful in video tracking, video analysis and
understanding. We have begun to apply these algorithms designed originally
for visual scene analysis to audio scene analysis. We report some results here.
The joint audio-visual scene analysis will potentially open more venues for
further research.

2 AUDIO SCENE ANALYSIS HELPS VISUAL
SCENE ANALYSIS

Tasks like video indexing, summarization and retrieval usually start with
low-level feature extraction followed by analysis based on these features or
based on modeling “high-level” concepts using these features. Examples of
these features are color histogram, texture and shape. Examples of the “high-
level” concepts are play or break in soccer games, in-door or out-door scenes.
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The accuracy of these tasks can be greatly improved when scene analysis is
also carried out in the audio. There are two reasons for this integration. First,
many “high-level” concepts such as explosion, rocket launching are audio-
visual events. They are better modeled using joint audio-visual cues. Next,
some “high-level” concepts are more easily modeled in the audio domain than
in the video domain. An example is the detection of humorous moments in sit-
coms. The detection of audience laughter is easier than the detection of
humorous video gestures or actions. We have shown that audio analysis alone
can achieve good results in tasks such as sports highlights extraction. We have
also shown that a joint analysis from both two domains out-perform either of
the single-domain analysis (Xiong et al., 2004).

There are several research issues on how audio scene analysis helps visual
scene analysis:

Recognition without audio source separation. In the example of
sports highlights extraction, the audio sound track has a lot of audio
mixtures such as applause with commentator’s speech, music with
speech in the commercial sessions. In the latter case, although it is a
mixture of speech with music, the separation will not be necessary for
the task of deciding whether it is highlight or not.

Separation then recognition. In the above example of applause with
commentator’s speech, if we can separate the applause from the com-
mentator’s speech then the applause can be used to identify the high-
light more accurately. Without separation, it might be difficult to
recognize the applause sound in the mixture in the first place.

What is the best way to fuse the audio scene and visual scene
analysis? Many fusion techniques have been proposed in literature
such as coupled Hidden Markov Models (HMMs), Dynamic Baye-
sian Nets (DBNs) etc. We have shown the advantage of coupled
HMMs over single modality HMMs, but we are aware of the short-
comings in that system. These include the difficulty locating the onset
and offset of the targeted events, the existence of unexpected events
that are not included in the learned models of the pre-defined events
and so on.

How to use the stereo sound to help audio scene analysis? Broad-
cast video content usually comes with stereo audio signals. However,
litter work has been done to take advantage of this fact. Note that this
is different from separation of two speakers from two microphone
recordings.
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3 VISUAL SCENE ANALYSIS HELPS AUDIO
SCENE ANALYSIS

The problem of audio source separation has its counterpart in visual scene
analysis, from image foreground/background separation, image segmentation
to event detection in video. So many of the techniques developed in image/
video domain can potentially be useful to separate audio sources.

Probabilistic machine learning techniques will be our main tools.
Recently, we have found that generative probabilistic models (GPMs) are
especially useful for visual scene analysis, and we have also obtained prelimi-
nary results using GPMs for microphone array analysis.

3.1 Probabilistic Models

Probabilistic models are natural candidates to use when analyzing com-
plex data, such as video frames and audio signal, which contain many
uncertainties, such as which object a given pixel belongs to. A complete
description of a probabilistic model requires the joint probability of all ran-
dom variables. Since the number of random variables can be very large, we
run into problems when trying to estimate the full joint distribution from a
limited amount of data; when trying to store the exponentially large number
of parameters; and when trying to compute marginal probabilities, which take
exponential amounts of time. Fortunately, in most scenarios, the random vari-
ables are not all interdependent. Each random variable is usually directly
dependent only on a small subset of the remaining random variables (the
Markov blanket). Dependencies on other variables are mediated through the
variable’s Markov blanket. Thus, the complete joint probability distribution
(or density function) can be factored into simpler components. This factoriza-
tion can be efficiently described using graphs, and in particular Bayesian
Networks (BNs) (Pearl, 1988).

In statistical pattern analysis, there are two major categories of probability
models: discriminative and generative. In the discriminative approach, we
model the conditional probability of the class label given the observation and
are usually not concerned with how to explain the observed data. A generative
model, on the other hand, includes any hidden variables that are useful in
accounting for structured effects, such as variations in illumination. In a gen-
erative model, if all the probabilities are known, then one can generate a
sample observation from the model that will resemble real observed data. In
analysis tasks, we are given the observed data and must find a probability
model that reflects prior structural knowledge, and efficiently explains the
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data. Model estimation is often performed using the expectation-maximiza-
tion (EM) algorithm and similar techniques (Dempster et al., 1997).

3.2 Generative Probabilistic Model (GPM) in Visual
Scene Analysis

Recently, GPM (specifically, BN) have been applied to the problem of
automatic visual scene interpretation and object tracking (Tao et al., 2000;
Wilson and Bobick, 1999; Frey and Jojic, 1999; Jojic et al., 2000; Williams
and Titsias, 2002; Frey and Jojic, 2003). Our earliest work was to detect in an
unsupervised way recurrent spatial patterns in a video sequence, for example,
to find image clusters in the set of images in the central panel of Figure 19.1.
Notice that there are two human subjects in this set of images and that their
positions vary among the images. The traditional Expectation-Maximization
(EM) algorithm takes these images and tries to fit a mixture of Gaussian prob-
ability distribution. The means of the learned mixtures are shown in the
lower-right panel of Figure 19.1 for a case of 4 mixtures. Due to the fact that
the observed images are not well aligned, these mean images are quite blurry,
Frey and Jojic (2003) have introduced a GPM (see the leftmost panel of Fig-
ure 19.1) to model how those images are generated. First, an image class c is
generated. Then depending on which class it is, a random variable z is gener-
ated, which is assumed to be Gaussian. Its mean is the mean of the images in
class c. Next a random variable s is generated which specifies the spatial shift
to be applied to z. Given s and z, an observed image x is generated. x is also a
random variable with the mean being the shift version of z, i.e. s(z). The infer-
ence problem is that given only the observed x, how to estimate s, z and c.
Frey and Jojic addressed this problem in (2003). Their results on the same set
of data are shown in the upper-right panel of Figure 19.1. These cluster cen-
ters are much less blurry.

The original algorithm in Frey and Jojic (2003) worked in the batch mode.
More recently, we have developed an on-line version and have used it to clus-
ter frames in videos (Jojic et al., 2003).

To account for multiple objects that may occlude each other, a layered rep-
resentation of the 3-D scene can be included in a hierarchical BN (Jojic et al.,
2000; Jojic et al., 2003). This BN accounts for the locations, 2-D appearances
and 2-D shapes of multiple, occluding objects in a 3-D scene. The total num-
ber of configurations of the object instantiation parameters is too large for
exact inference, but an approximate variational method can be used to approx-
imately compute probabilities and perform generalized EM learning (Neal
and Hinton, 1998). An example of the decomposition of an input video frame
into its layers after learning is shown in Figure 19.2. Note that the only input
to the variational EM algorithm was the number of layers and the input video.
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Figure 19.1. Left: The GPM to detect recurrent spatial patterns in a video sequence. Middle: A
set of image examples. Upper-Right: Cluster centers found using the GPM method.
Lower-Right: Cluster centers found by the traditional EM algorithm.

Figure 19.2. Three layers were learned from the input video (frames at the upper-left
quadrant), and then probabilistic inference was used to re-render the video frames,
automatically deriving various layers (background frames at the upper-right, frames of one
person at the lower-left and frames of another person at the lower-right quadrant). Note that the
positions of the two persons in the images are correctly inferred.

In this model, each object is described by a 2-D “cardboard cut-out”, i.e.,
an appearance map and a transparency map (mask) that specifies whether
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each pixel is transparent or opaque, or somewhere in-between. Each cut-out
can appear at any location in the scene and importantly. Jojic and Frey (2001)
showed how a variational technique can be used for approximate probabilistic
inference and learning in this model. After learning, probabilistic inference
can be used to locate objects and their instantiation parameters (e.g., position
of a person). Since the above technique makes use of a principled probability
model, this model can be combined with other generative probabilistic mod-
els, such as models of audio, to perform joint multi-modal analysis tasks.

4 SEPARATION OF AUDITORY CORRELOGRAM

Inspired by the visual scene analysis algorithm in Jojic and Frey (2001),
we explore the possibility of using existing GPMs (developed for visual scene
analysis, such as layering) directly on suitably chosen representations of audio
signals. In particular, we think a potentially useful representation is the audio
correlogram (Slaney et al., 1994).

The audio correlogram is a 3-D representation of an audio signal. It is
derived by taking the short-time autocorrelation of each frequency band in a
2-D time-frequency representation of the audio signal:

where i is the frequency index, j is the time index taken K samples at a
time, is the autocorrelation delay index, r is the 2-D time-frequency repre-
sentation of the audio signal which is chosen to be the audio cochleagram
(Slaney et al., 1994) and w is a short-time rectangular window. Slaney et al.
(1994) have shown that it is possible to reconstruct the original audio signal
from its audio correlogram almost perfectly.

We propose to develop an inference algorithm that can separate the correl-
ogram of a sound mixture into correlograms of the individual sources, and
reconstruct the sources using the separated correlograms. In the following, we
describe this approach in the case of separating 2 sources from 1 mixture.

The observed pixel intensities x in a frame of the correlogram, i.e,
A(:, j,:), is assumed to be explained by combining a transformed version of a
vector of pixel intensities of the first source and a transformed version of a
vector of pixel intensities of the second source:
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where “*” indicates element-wise product. The transformation operators
and account for the change of fundamental frequencies of the two sources
respectively. Correlogram frames display an expanding-and-compression
effect which relates to the up-and-down changing pattern of the fundamental
frequency. This kind of change can be accounted for by a horizontal shift if
the coordinate axis is measured on a log-scale.

Since each frame of the correlogram is the auto-correlation of the fre-
quency response on the cochleagram, if the two audio sources are assumed to
be uncorrelated, then it is a valid assumption that the correlogram of the mix-
ture signal is the sum of the those of the two audio signals. This additive
property is shown in Figure 19.3. The left-most column and the central-col-
umn have several examples of correlogram frames. The right-most column
has the corresponding correlogram frames of the mixture audio signal. Since
the frames of the correlogram are similar to frames in a video sequence, we
believe that the video layering method described in Section 3.2 could be
applied here to separate the two sources.

Figure 19.3. Correlogram Frames of Two Audio Sources and the Mixture. Left: of vowel “ah”;
Center: of speech “a huge”; Right: of the mixture “ah + a huge”. The task is to infer the left and
central panel given only the right panel.

Assuming the noise term in Eqn. (2) is zero-mean Gaussian, the prior dis-
tributions over the sprite appearances are also Gaussian, and the
transformation, appearance map of one signal are independent of those of the
second signal, given the correlogram video sequence, probabilistic inference
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and learning are used to computer a single set of model parameters that repre-
sent the entire video sequence. The parameters include the means and
variances of the sprite appearance maps and the observation noise variable.

We use the generalized EM algorithm (Neal and Hinton, 1998) to learn the
parameters of the model in Eqn. (2). We will then use the learned parameters
to infer the correlogram frames of the individual sound source.

5 EXPERIMENTS AND RESULTS

We report our results on separating a mixture of the following two sounds.
The first is an utterance of two words “A huge” by a female speaker and the
second is an utterance of the vowel “Ah” by a male speaker. The two utter-
ances are both of 5000 samples long with a sampling rate of 8000 Hz. Their
wave forms are shown in the top row of Figure 19.5. The single sound mix-
ture is generated by adding these two utterances after they are scaled to have
equal energy.

Cochleagram of the sound mixture is generated using an implementation
of Lyon’s cochlea model by Slaney et al. (1994). To produce the 3-D correlo-
gram, each of the 64 cochlea channels undergoes a short-time autocorrelation
calculation within a 1000 sample window hopping every 250 samples. Fast
Fourier Transform (FFT) is used to calculate this autocorrelation to speed up
the calculation. After calculating the correlogram of the sound mixture, we
feed each frame of it to the Generative Probabilistic Model to learn the mask,
mean and variance of a 2-layer video model.

In this example, since the “Ah” sound is more or less harmonic, its correl-
ogram frames are stable, hence we learn it as a background layer, just like the
background images in the video frames shown in Figure 19.2. Its mask is
assumed to be uniform with zero variance. However, for the “A Huge” sound,
since the fundamental frequency of the speaker changes over time, we need to
account for both its change in position and amplitude. We learn it as a fore-
ground layer with unknown mask, like the moving person in the video frames
shown in Figure 19.2. As mentioned earlier, the horizontal coordinates of the
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Figure 19.4. Top row: the learned mask, mean of the appearance map and the masked mean of
appearance map for the first layer (for the “Ah” sound). Note the third picture is the
element-wise product of the first two pictures. Bottom row: those for the second layer (for the
“A Huge” speech).

Figure 19.5. Top row: the two original audio sounds, the “A Huge” speech and the “Ah”
sound. Bottom row: the separated two sound from a SINGLE mixture of the two sounds in the
top row. Although there is large distortion in the separated signals, listening tests show clear
separation of the “Ah” sound and the speech sound.
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correlogram frames are calculated in the log scale. The learned parameters for
the two sounds are plotted in Figure 19.4. Note that the third picture on the top
row shows the harmonic structure mostly of the “Ah” sound and the third pic-
ture at the bottom row shows the harmonic structure of the “A Huge” sound
(e.g., the white stripes in the middle of the image).

The learned mask, mean of each layer and the shift of the mean in each
correlogram frame are used to derive two separate correlograms (refer to the
video frames for one person and those for another person Figure 19.2). These
two correlograms are then used to invert the correlogram generation process
to produce two audio-domain signals. The inversion techniques here follow
Slaney et al. (1994). We shown the wave form of the two re-constructed sig-
nals in the bottom row of Figure 19.5. In comparison with the original wave
forms shown at the top row, we notice that there exists large amount of distor-
tion. However, our listening tests show clear separation of the “Ah” sound and
the “The huge” speech.

There are several issues that contribute to the distortion in reconstruction.
First, the phase information for either sound signal is not available, what we
have used is the phase of the mixture sound. Next, the correlogram frames of
the each sound do not contain localized, rigid objects like the two persons in
Figure 19.2. We will address these issues in our future research. Based on the
fact the two separated sounds do contain two different audio sources, we
believe our proposed approach deserves more research that will lead to prom-
ising results.

6 CONCLUSIONS

We have argued the necessity of joint audio-visual scene analysis to deal
with the difficult problem of CASA. It is argued that the problem of CASA
will benefit from computer audio-visual scene analysis (CAVSA). We also
propose a generative probabilistic model on correlogram, the video represen-
tation of audio signal, to separate the audio sources.
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Chapter 20

Evaluating Speech Separation Systems
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1 THE ASR EXPERIENCE

Quantitative evaluation is an essential and sensitive factor in any area of
technological research. Automatic Speech Recognition (ASR) provides an
instructive example of the benefits and costs of common evaluation standard.
Prior to the mid-1980s, speech recognition research was a confusing and dis-
organized field, with individual research groups tending to use idiosyncratic
measures that showed their particular systems in the best light. Widespread
frustration at the difficulty of comparing the achievements of different groups
– among researchers and funders alike – was answered by a series of care-
fully-designed evaluation tasks created by the US National Institute of
Standards and Technology (Pallet, 1985). While the speech material in these
tasks has evolved from highly constrained vocabularies, grammars and speak-
ing styles through to unconstrained telephone conversations, the principal
figure of merit has remained the Word Error Rate (WER) – the number of
incorrect word tokens generated by the system as a percentage of the word
count of the ideal transcript – throughout this period.

Over more than 15 years of NIST evaluations, the benefits of the common
evaluation task and single performance measure have been dramatic. Standard
measures have made it possible to give definitive answers to questions over
the relative benefits of different techniques, even when those differences are
small. Since the advent of Gaussian Mixture Model-Hidden Markov Model
(GMM-HMM) recognition systems, it turns out that most ASR improvements
have been incremental, rarely affording an improvement of more than 10%
relative, yet we have seen a compound system improvement of perhaps two
orders of magnitude through the careful and judicious combination of many
small enhancements. Accurate and consistent performance measures are cru-
cial to making this possible.
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The disadvantage to this powerful organization of the field around a com-
mon goal and metric conies from the kind of ‘monoculture’ we see in current
speech recognition research. Of the many hundreds of papers published in
speech recognition journals and conference proceedings each year, the vast
majority use same GMM-HMM framework or very close relatives, and of the
dozen or so labs working on large-vocabulary speech recognition systems and
participating in current MIST evaluations, all are using systems that appear
identical to a casual observer. If GMM-HMM systems were obviously the
‘right’ solution, this might be expected; however, many researchers are
uncomfortable with the HMM framework, but feel obliged to keep working
with it because the performance loss incurred by switching to a less mature,
less optimized novel approach would jeopardize the acceptance (and publica-
tion) of their work (Bourlard et al., 1996).

The dominance of a common standard can have other disadvantages. The
universal adoption of WER as the principal performance measure has led to a
focus on transcription tasks and speech-only material to the neglect of other
kinds of signals (including, of particular relevance to the current volume,
many kinds of speech-interference mixtures). A single style of task and a sin-
gle performance measure dominating the field for several decades has
resulted in solutions more and more closely optimized for that one task, and a
widening gap between performance on the focus tasks and other applications,
for instance speech mixtures, that may be equally important in a broad sense
but happen not to have been included in the evaluations.

1.1 Lessons of evaluation

From the example of speech recognition, we can draw the following
lessons:

Common evaluation tasks (along with the corresponding performance
metrics) can have a very positive effect on research and progress in a
given field by providing detailed, quantitative answers to questions
over the relative merits of different approaches. In addition to further-
ing debate, this information makes it easier for funding sources to
support the field, since they can be more confident that their money is
getting results.

When a single task is defined, and particularly when it bears on fund-
ing and other resource allocation, there will be a great concentration
on that task leading to the neglect of similar but distinct problems.
Thus, the task chosen should ideally represent a real problem with
useful applications – so that even in the worst case, with only that one
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problem being solved, there is still some valuable output from the
research.

Funneling all the effort of a research community into a single, narrow
focus is generally undesirable; one alternative is to define more than
one task and/or more than one performance measure, to create multi-
ple ‘niches’ supporting several different threads of research. Making
these niches too numerous, however, defeats the benefits of common
evaluation: if each separate group evaluates their approach with a dif-
ferent measure, benefits of a common standard are largely lost.

2 EVALUATING SPEECH SEPARATION

An evaluation task consists of two components: a domain or application
area, specifying the kinds of material that will be considered (such as in-car
speech, or target-versus-interferer speech); a metric such as word error rate or
signal-to-noise ratio, which implicitly defines the core nature of the problem
to be addressed (recognizing spoken words or reducing distortion energy
respectively). Since certain metrics place additional constraints on the domain
(such as the availability of isolated pre-mixture sources), we will first con-
sider the range of metrics that are available and that have been used in speech
separation work.

Metrics can be arranged on an axis of abstraction, from those that measure
the most concrete, literal properties of signals, through to those concerned
with much higher-level, derived properties in the information extracted from
the signals.

2.1 Signal-to-noise ratio

The simplest measure, signal-to-noise ratio (SNR), requires that the sys-
tem being measured reconstructs actual waveforms corresponding to
individual sources in a mixture, and that the pre-mixture waveforms of those
sources (the ‘ideal’ outputs) are available. SNR is defined as ratio of the
energy of the original target source to the energy of the difference between
original and reconstruction – that is, the energy of a signal which, when lin-
early added to the original, would give the reconstruction. This measure is
commonly used for low-level algorithms that have a good chance at near-per-
fect separation (such as multi-channel Independent Component Analysis (Bell
and Sejnowski, 1995), or time-frequency masked reconstruction (Brown and
Cooke, 1994)), and is arguably sufficient: if we are able to reconstruct a signal
that (almost) exactly matches some clean, pre-mixture version, then any other
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information we wish to obtain is likely also to be available. However, the
problems of SNR are:

It requires the original signal for comparison, largely limiting its use
to mixtures that are artificially constructed, rather than those recorded
from real environments.

Distortions such as fixed phase/time delays or nonuniform gains
across frequency which can have only a small effect on the perceived
quality of a reconstructed sound, can have a large negative effect on
SNR.

The common unit of measurement, energy, has in general only an
indirect relationship to perceived quality. The same amount of energy
will have a widely-varying impact on perceived quality depending on
where and how it is placed in time-frequency; this is particularly sig-
nificant in the case of speech, where most of the energy is below 500
Hz, yet very little intelligibility is lost when this energy is filtered out.
Another example of the disconnect between SNR and perceived qual-
ity comes from the psychoacoustic-based coding used in schemes like
‘MP3’ audio, where a reproduction with an SNR of under 20 dB can
sound essentially perfect because all the distortion energy has been
carefully hidden below the complex masking patterns of the auditory
system.

2.2 Representation-based metrics

While SNR has the attraction of being applicable to any system that gener-
ates an output waveform, more helpful measures (at least from the point of
view of system development) can be derived directly from whatever represen-
tation is used within a particular system. Thus, in Cooke’s original
Computational Auditory Scene Analysis (CASA) system (Cooke, 1991), an
evaluation was performed by comparing the ‘strands’ representations resolved
by his system with the representation generated for each source in isolation,
thereby avoiding the need for a strands-to-sound resynthesis path.

By considering the internal representation, evaluations can also be made
relative to an ‘ideal’ performance that reflects intrinsic limitations of a given
approach. Many recent systems are based on time-frequency (TF) masked
refiltering, in which Gabor ‘tiles’ in TF are classified as target-dominated and
selectively resynthesized (Hu and Wang, 2003; Roweis, 2001). Such an
approach cannot separate overlapped energy falling into a single cell, so an
SNR ceiling is achieved by an ‘ideal’ mask consisting of all the cells in which
target energy is greater than interference (since including any other cells will
increase the distortion energy, by adding noise, more than it is decreased by
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reducing the deleted target). Systems based on these masks can be evaluated
by how closely they approach this ideal mask e.g. by measuring the classifica-
tion accuracy of TF cells. This measure removes the effective weighting of
each cell by its local signal energy in SNR calculation; however, it gives a dis-
proportionate influence to near-silent TF cells whose ‘ideal’ classification
will depend on the likely irrelevant noise-floor level in the original mixture
components.

Another analysis possible with masked refiltering systems is the separate
accounting for distortion due to energy deleted from the target, and due to
included portions of the interference (the “energy loss” and “noise residue” of
(Hu and Wang, 2003)). However, we are again faced by the problem of the
perceptual incomparability of energy in different parts of time-frequency.

2.3 Perceptual Models

As indicated above, the inadequacies of SNR have long been apparent in
the active and successful field of audio coding. When the goal is to satisfy
human listeners (e.g. telephony customers or music consumers), there is no
substitute for formal listening tests in which subjects rate the perceived qual-
ity of various algorithms applied to the same material. Due to the cost of such
evaluations, however, considerable effort has gone into developing algorith-
mic estimates such as the ITU standards for PEAQ and PESQ (Perceptual
Evaluation of Audio/Speech Quality (Thiede et al., 2000)). While these mea-
sures also require a pre-distortion original reference, they make sophisticated
efforts to factor out perceptually-irrelevant modifications, and their use for the
evaluation of low-level signal-separation systems deserves investigation.

2.4 High-level attributes

While perfect signal recovery may be sufficient, it is rarely necessary. Sig-
nal separation is not an end in itself, but a means to some subsequent
application, be that recognizing the words in some noisy speech, or even the
pleasure of listening to a solo musical performance without additional instru-
ments. In every case, metrics can be devised to measure more directly the
success of the signal separation stage on the overall application. When the
ultimate task is extracting specific parameters, such as the times of occurrence
of certain events, or perhaps limited descriptions of such events (such as onset
times, pitches, and intensities in polyphonic music transcription), it is natural
to evaluate in terms of the error in that domain.

By far the most widespread evaluation falling into this category is word
error rate of speech recognition systems for mixed signals. Given the wide-
spread acceptance of WER as a measure for isolated speech recognition, it is
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natural to extend the same metric to conditions of significant interference,
even when substantially different processing is introduced to address that
interference. This approach was taken in one of the earliest models of auditory
scene analysis (Weintraub, 1985), although in that work, as in many subse-
quent experiments, it was found that in some cases that the signal separation
preprocessing made the error rate worse than simply feeding the original mix-
ture to an unmodified recognition engine.

Using signal separation to aid speech recognition requires a careful match
between the separation techniques and the recognition engine: one example of
a well-matched combination highlights the difference between this and lower-
level metrics. In missing-data recognition (Cooke et al., 2001), the matching
between observed signal and learned speech models is modified to account
for limited observability of the target i.e. that certain dimensions can be miss-
ing at different times. Acoustic scene organization algorithms are then
employed to indicate which dimensions (e.g. TF cells) are reliable correlates
of the target speech at each instant (Barker et al., 2004). This work reports
minimal increase in word error rate in cases when significantly less than half
the features are deemed ‘reliable’ – a situation which would likely give a
highly-distorted resynthesis, but which still contains plenty of information to
recognize the spoken words largely without ambiguity.

However, because of the sensitivity of WER measures to the compatibility
(and, as in (Barker et al., 2004), close functional integration) between separa-
tion algorithm and speech recognizer, this measure is only appropriate for
systems specifically built for this application.

2.5 Domains

Among acoustic signal separation tasks, speech mixed with different kinds
of interference is the most popular domain and is our main concern here. The
target voice can experience different amounts of spectral coloration, reverber-
ant smearing, or other distortion, but the main axis of variation is in the nature
of the interference signal. Simplest is Gaussian white noise, which can be
made a more relevant masker by filtering into pink noise (equally energy per
octave) or to match some average speech spectrum. In speech recognition, a
common approach is to train models for the combination of speech-plus-
noise, which can be very successful for such stationary noise particularly
when the absolute level is constrained; a distinct stage of signal separation is
avoided completely.

Real-world sound sources comprise a more challenging form of interfer-
ence because their impact on the features cannot be predicted so accurately
(i.e. with small variance), although the combination of a large number of inde-
pendent sources will tend towards Gaussian noise. At a given power level, the
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most difficult interference should be a single second voice, since the statistical
features of the interference are indistinguishable from the target. (In practice,
a single voice offers many opportunities ‘glimpsing’ the target during silent
gaps in the interference, so a combination of a small number of unsynchro-
nized voices may achieve greater interference.)

The majority of noisy speech tasks are created artificially by mixing
speech recorded in quiet conditions with different “pure interference” signals
(e.g. (Pearce and Hirsch, 2000)). This approach has the attractions that the rel-
ative levels of speech and noise can be adjusted, the same speech can be
embedded in several different types of noise, and the clean speech can be used
to generate a baseline performance. However, it is a poor match to reality:
there is no guarantee that the synthetic mixture actually resembles something
that could ever have been recorded in a noisy environment, not least because
of the Lombard effect, the reflexive modification of speaking quality
employed by humans to overcome noisy environments (Lane and Tranel,
1971). Other effects such as reverberation are also frequently ignored in syn-
thetic noise mixtures.

Given the problem identified above of solving only what we test, it would
seem preferable to use real recordings of speech in noisy environments as test
material. While some data of this kind do exist (Schmidt-Nielsen et al., 2000),
on the whole it is avoided due to the flexibility and control available with syn-
thetic mixtures as just mentioned: recording a range of speech material
against a range of background noise types and levels requires, in the worst
case, a separate recording for each condition, rather than factorized combina-
tions of a few base recordings.

Another problem with real-world recordings is the availability of ground-
truth descriptions. If we artificially mix a clean voice signal against a noisy
background, we may hope that our speech separation algorithms will recreate
the original clean speech; if the noisy speech is all we have, how can we even
judge the quality of the resynthesis? I would argue, however, that this
assumption that the pre-mixture original represents the unique best output we
could hope for is in fact dodging the more difficult, but more important, ques-
tion of deciding what we really want. If the purpose of the algorithm is to
enhance noisy speech for a person to listen to, then the appropriate metric is
subjective quality rating, not similarity to an original signal which may not, in
fact, match the impression of the source speech in the mind of the listener.

This appeal to subjective sources for ground truth in complex mixtures
extends beyond speech in noise: In (Ellis, 1996), a computational auditory
scene analysis system that sought to mark the occurrence of different sound
events in complex, real-world ambient sounds was evaluated on its ability to
duplicate the consensus results of a set of listeners given the same task.
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3 CONCLUSIONS AND RECOMMENDATIONS

In light of this discussion, we make some recommendations for the form
of a future, widely-applicable evaluation task for speech separation systems:

It should be based on some kind of real-world task, so that if the
worst-case occurs and we end up with solutions applicable only to
this narrow task, they can at least be deployed to some purpose.

The data should be real recordings, or possibly synthetic recordings in
which all the possibly relevant aspects of the real recording have been
carefully duplicated.

The evaluation ground truth (be it word transcripts, event detection
and descriptions, or other information from the signal) should origi-
nate from human transcribers to get at the ‘subjective’ character of
the sound.

As this implies, the domain of comparison should be in terms of high-
level information and attributes, rather than low-level comparisons
against some ideal waveform.

If the task represents a real and useful domain, it ought to be possible
to gather comparable human performance on the same task, so we can
accurately measure how well our machines do relative to the best cur-
rently-known listening machine. Ideally, this would be a task that
humans (perhaps impaired populations) find somewhat difficult, to
give the machines a chance to exceed human performance – although
machines that came anywhere close to human performance on any
kind of acoustic scene analysis would be welcome.

One possible domain is audio recorded in real, multi-party meetings, and
this task has recently begun to attract attention (Yu et al., 1999; Morgan et al.,
2001). Such corpora typically involve significant amounts of speech overlap,
and often have both near- and far-field microphone recordings; the head-
mounted near-field mics provide a kind of ground-truth reference for the
voices picked up by the far-field tabletop mics.

Speech separation is often referred to as the Cocktail-Party problem (fol-
lowing (Cherry, 1953)), and a room containing multiple simultaneous
conversations might provide an interesting test domain, one that would mostly
defeat human listeners. Such a party could be staged with each participant
wearing a head-mounted microphone (which can be inconspicuous) to pro-
vide some level of ground-truth. An interesting corpus along these lines is the
Sheffeld-ATR Crossword task (Crawford et al., 1994), which involved two
simultaneous conversations with a fifth participant occasionally involved in
both.
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A final area is the kind of continuous personal recording proposed in
(Bush, 1945) and investigated in (Clarkson et al., 1998): wearable micro-
phones and miniature hard-disk recorders can easily make complete records
of a user’s acoustic environment, but to allow any kind of useful retrieval
from hundreds of hours of such recordings requires automatic analysis of
which acoustic source separation will be an important part.

In conclusion, insights from speech recognition and elsewhere show that a
common evaluation task is critical to the future progress and support of
speech separation research. The form and nature of such a task, however, is
far from clear, not least because there is little consensus on the real purpose or
ultimate application for speech separation technologies. We favor a task
firmly embedded in real-world scenario, and an evaluation metric that reflects
subjective information extraction rather than an objective, but arbitrary, low-
level ideal.
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1 INTRODUCTION

To make sense of speech in everyday conditions, listeners have to cope
with distortions produced by additive noise, reverberation and channel char-
acteristics. A better understanding of the processes involved will lead to
progress in robust automatic speech recognition and will inform the design of
more selective hearing aids. After several decades of work on both the psy-
chophysics and algorithmics of speech separation, a clearer picture of the
factors involved in the process of understanding speech in the presence of
other sources is emerging.

The first part of this paper describes the main factors which contribute to
our ability to understand speech in noise. Some of the many interactions
between such factors are highlighted and the implications for models of
speech segregation are discussed. The second part of the paper introduces a
model for the perception of noisy speech based on the notion that listeners
exploit ‘glimpses’ of the target signal rather than attempting to completely
separate out a clean speech signal. A study which explores the issues of suffi-
ciency and utility of glimpses is discussed.

2 SOURCE UNDERSTANDING IN NOISE

Many factors can influence a listener’s ability to make sense of a target
source such as speech in an acoustic mixture. Some of these are listed below:

1. Audibility of the target (energetic masking)

2. Confusability of the target and background (informational masking)
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Availability of organisational cues in the target

Availability of organisational cues in the background

Existence of schemas for the target

Existence of schemas for the background

3.

4.

5.

6.

The list is not complete, since factors such as attention and cues from other
modalities (principally vision) also play a role in source understanding.

These factors do not act independently. The following list describes some
of the many interactions between them.

Background cues may help define the target via cancellation, while
target cues can define the background as a residue (3, 4). Both cancel-
lation and residue-based strategies have been proposed in models of
auditory scene analysis (de Cheveigné, 1993; Nakatani et al, 1998).

Target and background cues may act separately or jointly to detect
coherent audible regions arising from one or other source in a mixture
(1, 3, 4). Bottom-up approaches to CASA (e.g. Brown and Cooke,
1994) employ precisely these types of cues in source segregation.

While the preceding suggests that background grouping cues may be
useful, an absence of grouping cues in the background sources may
reduce the amount of informational masking (2, 6).

Differences in target and background grouping cues may appear as a
release from energetic masking (1, 3, 4). For example, onset differ-
ences, which are known to help in source segregation (Darwin, 1981;
Bregman, 1990), also cause a reduction in spectral overlap and hence
improve the audibility of source components.

Differences in target and background properties may decrease infor-
mational masking (2, 3, 4). For example, a difference in F0 contour
may make sources less confusable.

Target and background schemas may co-operate to jointly explain the
observed mixture (5, 6). This approach underlies so-called ‘model-
based’ techniques for source segregation such as HMM decomposi-
tion (Varga and Moore, 1990) and MAXVQ (Roweis, 2003).

Schemas for the target may be used to detect and integrate audible
regions, with or without the help of other factors (1, 5). In a sense,
this is the approach championed by Remez et al (1994), who argue
that speech is sufficiently special to allow learned representations of
the signal to be employed in extracting speech from mixtures.

Poor discriminability between target and background schemas might
appear as informational masking (2, 5, 6). For example, a lack of
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exposure to certain sources (perhaps while learning a second lan-
guage) is likely to make them more confusable.

Factors which appear as bottom-up, organisational cues may in fact
be embedded in schemas via learning (3, 5). For example, cues which
arise from vocal tract length differences or different pitches may be
represented as sets of schemas for each speech unit.

The interactions detailed above have a number of consequences for
research in sound segregation. First, there is clearly the potential for multiple
explanatory mechanisms, as evidenced by the variety of algorithms which
have been proposed. Some of these can be regarded as wholly ‘bottom-up’
and others as wholly ‘top down’, but this distinction is oversimplified given
the space of possible interactions. Second, certain processes may masquerade
as others. For instance, cue differences may lead not only to a reduction in
confusability but at times to a reduction in energetic masking. Third, tradeoffs
exist: for example, harmonic backgrounds increase the opportunities for can-
cellation strategies, but may also lead to an increase in informational masking
of harmonic foregrounds.

This analysis raises a number of issues:
What are the relative contributions of these factors in sound source
separation and understanding?

What is the role of background sources? Does it help to have schemas
for these sources? Does it help if the background contains grouping
cues?

Can successful identification occur without foreground and back-
ground grouping cues?

How fine-grained is separation? Do listeners separate in order to
identify, or is separation a by-product, or even an illusion?

Current and recent work is clarifying some of these issues, at least for
speech targets. For instance, Brungart and colleagues are exploring the rela-
tive roles of informational and energetic masking in cocktail-party-like
situations (Brungart et al, 2001).

3 AN ILLUSTRATION: SINGLE COMPETING
TALKER VS MULTI-SPEAKER BABBLE

The interplay of the factors introduced in section 2 can be illustrated by
considering their explanatory power in the case of speech masked by N-
speaker babble, for N=1 and 8. Figure 21.1, from Miller (1947), demonstrates
that when the source and background are equally intense, listeners have a
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clear preference for a single competing talker, in spite of the fact that the
degree of informational masking in this situation is much stronger than in the
multispeaker babbler case. In fact, one might expect the multispeaker babble
to present fewer problems for source separation for another reason: it is a less
variable source. It is well-known that computational approaches to speech
enhancement provide little or no benefit in the face of even moderate depar-
tures from background stationarity. Algorithmically, removal of quasi-
stationary noise presents few problems, but it appears that listeners employ
other strategies.

In terms of the factors outlined in section 2, there are at least three ways in
which listeners might benefit from a single-speaker background. First, they
are able to employ organisational cues for both foreground and background
sources, leading to the possibility for cancellation-based enhancement, at least
for the voiced parts. Second, they have access to models for both the fore-
ground and background sources, allowing the operation of processes which
jointly attempt to explain the observed energy at each time-frequency point.
Third, the variability in the speech masker allows for a greater number of
opportunities to ‘glimpse’ the target when compared to the multispeaker bab-
ble case. This final factor is illustrated in Figure 21.2, which shows the
percentage of time-frequency ‘pixels’ which have a locally-favourable SNR
for the speech target for both single-speaker and 8-speaker backgrounds.

Figure 21.1. Listeners’ consonant identification accuracy in conditions of N-speaker babble.
Redrawn by Assmann and Summerfield (in press) from Miller (1947).
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Figure 21.2. Proportion of glimpses of a speech target available in the presence of a
background composed of 1 or 8 speakers, as a function of SNR.

The relative contribution of the three factors to the single-speaker back-
ground advantage is at present unclear. While perceptual models inspired by
the first two factors – grouping and schemas – have appeared, less attention
has been paid to the role of glimpsing. The following section outlines a model
inspired by the glimpsing notion.

4 A GLIMPSING MODEL

4.1 Why glimpse?

The notion that listeners can utilise glimpses of the target source in every-
day noise backgrounds contrasts with the source enhancement approach, in
which listeners attempt to recover the target source prior to identification. The
latter approach has dominated the computational literature on robust auto-
matic speech recognition, primarily since it allows the use of unmodified
recognition technology. However, Cooke et al (1994; 2001) and others have
demonstrated that modifying the recognition process to admit the possibility
of ‘missing data’ leads to substantial improvements in robust ASR perfor-
mance. Glimpsing can be thought of as the perceptual equivalent of missing
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data techniques in ASR. Cooke (2003a) contains detailed arguments for
glimpsing in speech perception.

A working definition of a glimpse is some time-frequency region which
contains a reasonably undistorted ‘view’ of local signal properties. For con-
creteness, we can imagine that the local signal property of interest is energy,
although it is likely that other properties such as local estimates of F0, AM
and FM will be useful too. Is it reasonable to expect such undistorted views of
speech targets in natural conditions? Fortunately, the answer is yes, due to
two factors: the log-like compression of energies in the peripheral auditory
system, and the modulation frequencies present in speech due to the pattern-
ing of voiced, unvoiced and silent segments. The former property ensures that
the log energy at virtually all spectro-temporal points is dominated by the
stronger source, while the latter provides the nonstationarity which increases
both the number and extent of glimpses. Figure 21.3 illustrates both properties
in action for a speech target masked by a single-speaker background. The par-
titioning of a mixture on the basis of energetic dominance is almost perfect,
with very few ‘ambiguous’ regions. Further, glimpses of one or other source
tend to be quite large and coherent.

4.2 Issues for a glimpsing model

While glimpsing based on mixture partitioning appears to be an attractive
alternative to complete speech separation, it presupposes the solution to a
number of problems:

Is sufficient information contained in glimpses to support identifica-
tion?

What constitutes a useful glimpse?

How might listeners and computational techniques detect and inte-
grate glimpses?

The study described in the following section addressed the first two ques-
tions. Glimpse detection remains an open problem, though techniques based
on computational auditory scene analysis (Cooke and Ellis, 2001) are likely to
be part of the solution. Glimpse integration is being tackled via a new form of
speech decoder described in Barker et al (in press).
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Figure 21.3. Upper Plot: auditory spectrograms for two utterances and their mixture at 0 dB
SNR (bottom). Lower Plot: the middle and lower panels show those regions in the mixture
which are dominated by one or other source, where dominance is defined as having a local
SNR exceeding 3dB. The upper panel depicts ‘ambiguous’ regions whose local SNR is in the
range (-3, 3) dB.

4.3 Glimpsing in VCVs: listeners vs a model

To measure the extent to which listeners can utilise glimpses in noisy
speech perception, subjects and a computational model based on missing data
techniques were compared on a consonant identification task (Cooke 2003b).
Subjects were asked to distinguish 16 consonants presented in an /a/_/a/ con-
text, using the corpus collected by Shannon et al (1999). Two noise
backgrounds consisting of reversed N-speaker babble, for N=1 and 8 were
employed, at three target-to-masker ratios (0, -6, -12 dB). Figure 21.4 (left)
shows listeners’ identification rates. These results bear out the 8-12 dB advan-
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tage of single-speaker backgrounds over multi-speaker babble found by
Miller (1947). Figure 21.4 (left) also shows the performance of an ‘ideal’
glimpsing model which utilises all spectro-temporal regions with a locally-
favourable SNR. Clearly, there is more than enough information in the
glimpsed regions to explain listeners’ performance on this task.

How likely is it that listeners can detect all possible glimpses, given that
some will occupy a very small region of the spectrogram and will be
swamped in a sea of noise? A ‘useful’ glimpse can be defined as one which
has at least a certain extent in time and frequency. By searching through all
possible minimum (rectangular in time-frequency) extents, a good match to
listeners’ performance could be obtained for a minimum size of 6.3 ERBs by
40 ms. Figure 21.4 (right) shows the model performance in this case.

5 DISCUSSION

One interpretation of these results is that glimpsing alone provides a
potential explanation for listeners’ performance on this task, but these results
should be interpreted with caution. First, the masking model which underlies
the choice of glimpses does not take nonsimultaneous masking into account.
Second, unpublished experiments have demonstrated that listeners perform
almost as well in the presence of speech modulated noise as they do in natural
speech backgrounds, in spite of the fact that speech modulated noise provides
fewer glimpses of the target. In terms of the factors outlined in section 2, one
might interpret this result as the consequence of a release from informational

Figure 21.4. Left: listeners versus ideal model performance on a VCV identification task for
both single and eight speaker maskers. Right: comparison of listeners with a model which
assumes a minimum useful glimpse size of 6.3 ERBs in frequency by 40 ms in time.
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masking, although the absence of background grouping cues or schemas
would be expected to lead to a reduced performance. Further work is required
to determine the relative contributions of these factors.

How do glimpses fit in with the energetic and informational masking con-
cepts? Superficially, glimpsing appears to be closely related to the former.
However, it would be wrong to equate the glimpsing account solely with ener-
getic masking. While energetic masking provides a baseline defining those
spectro-temporal regions which might constitute glimpses, the ability to make
sense of speech from these regions will depend on mechanisms for their
detection, and, crucially, their integration. In the 2 speaker case, we can
regard glimpse integration as akin to making sense of a jigsaw image where
the pieces of two jigsaws are not only jumbled up, but where some significant
proportion is lost in the process. The factors which determine whether this
integration problem is easy to solve may very well be similar to those thought
to be implicated in informational masking, viz. similarity in properties such as
F0, vocal tract size and phonemic class.
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