

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2007939307

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 [PRINTER CODE] 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, Excel, MSDN, MultiPoint, SharePoint, SQL Server, Virtual Earth, Visual
Studio, Win32, Windows, Windows PowerShell, Windows Server, and Windows Vista are either registered trademarks
or trademarks of the Microsoft group of companies. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sandra Haynes
Project Editor: Kathleen Atkins
Editorial Production: nSight, Inc.

A02L625587.indd 2 6/30/2008 3:46:47 PM

More Resources for SQL Server 2008
Programming Microsoft
SQL Server 2008
Leonard Lobel, Andrew J. Brust,
Stephen Forte
SBN 9780735625990

P
S
L
S
I

Microsoft® SQL Server® 2008
Administrator’s
Pocket Consultant
William R. Stanek
SBN 9780735625891

M
A
P
W
IS

icrosoft SQL Server 2008
ep by Step
ike Hotek
BN 9780735626041

M
St
Mi
ISB

mart Business Intelligence
olutions with Microsoft
QL Server 2008
ynn Langit, Kevin S. Goff,

Davide Mauri, Sahil Malik
SBN 9780735625808

S
S
S
Ly
D
IS

Microsoft SQL Server 2008
T-SQL Fundamentals
tzik Ben-Gan
SBN 9780735626010

M
T
It
IS

MCTS Self-Paced
Training Kit (Exam 70-432)
Microsoft SQL Server 2008
Implementation and
Maintenance
Mike Hotek
ISBN 9780735626058

M
T
M
I
M
M
I

Microsoft SQL Server 2008 Internals
Kalen Delaney et al.
ISBN 9780735626249

Inside Microsoft SQL Server 2008: T-SQL Querying
Itzik Ben-Gan, Lubor Kollar, Dejan Sarka
ISBN 9780735626034

Microsoft SQL Server 2008 Best Practices
Saleem Hakani and Ward Pond
with the Microsoft SQL Server Team
ISBN 9780735626225

Microsoft SQL Server 2008 MDX
Step by Step
Bryan C. Smith, C. Ryan Clay, Hitachi Consulting
ISBN 9780735626188

Microsoft SQL Server 2008 Reporting Services
Step by Step
Stacia Misner
ISBN 9780735626478

Microsoft SQL Server 2008 Analysis Services
Step by Step
Scott Cameron, Hitachi Consulting
ISBN 9780735626201

Microsoft SQL Server 2008 Internals

COMING SOON

See our complete line of books at: microsoft.com/mspress

http://www.microsoft.com/mspress/books/12755.aspx
http://www.microsoft.com/mspress/books/12859.aspx
http://www.microsoft.com/mspress/books/12858.aspx
http://www.microsoft.com/mspress/books/12753.aspx
http://www.microsoft.com/mspress/books/12806.aspx
http://www.microsoft.com/mspress/books/12663.aspx

To my wife, Claudia; my son, Christopher; and my daughter, Kate—my inspiration for being
the best that I can be.

—Peter DeBetta

A03D625587.indd 3 6/30/2008 4:39:40 PM

A03D625587.indd 4 6/30/2008 4:39:40 PM

A04G625587.in
Contents at a Glance

1 Security and Administration . 1

2 Performance . 39

3 Type System. 79

4 Programmability . 139

5 Storage . 179

6 Enhancements for High Availability . 199

7 Business Intelligence Enhancements . 211
v

dd 5 6/30/2008 4:39:24 PM

A04G625587.indd 6 6/30/2008 4:39:24 PM

A05T625587.in
Table of Contents

Foreword .xiii

Acknowledgments . xv

Introduction . xvii

T-SQL: Still Here to Stay . xvii

Goals . xvii

Working with Samples .xviii

Who Should Read This Book .xviii

Disclaimer .xviii

System Requirements .xviii

Support . xix

1 Security and Administration . 1

Introduction . 1

Policy-Based Management . 1

Policy Management in SQL Server 2008 . 1

Policy-Based Management in SQL Server Management Studio 2

Policy-Based Management Objects . 3

Policy Checking and Preventing . 11

Policy-Based Management in Practice. 14

Auditing SQL Server. 17

C2 Audit Mode . 18

Other Audit Techniques . 18

Auditing in SQL Server 2008 . 18

The Audit . 19

Audit Specifications . 21

Audit Results . 25

Bonus Query . 28
vii

dd 7 7/1/2008 6:56:44 PM

viii

A05T625587.indd 8
Table of Contents

Transparent Data Encryption . 29

What Is Transparent Data Encryption? . 29

Why Use TDE . 30

How Does TDE Work? . 31

Performance Considerations . 32

Certificate and Key Management . 33

Extensible Key Management . 36

EKM in Practice. 37

Summary . 38

2 Performance . 39

Resource Governor. 39

Resource Pools . 39

Workload Groups. 41

The Classifier Function . 42

Creating Resource Pools and Workload Groups. 44

Data and Backup Compression . 46

Data Compression . 46

Backup Compression. 54

Using Resource Governor to Minimize CPU Impact 55

Other Notes Regarding Compression . 57

Performance Data Collection . 58

Data Collection Setup . 58

Creating Collection Sets and Items. 60

Collecting Data. 64

Query Plan Freezing . 69

Plan Forcing . 69

Plan Freezing . 72

Viewing Plan Guides . 75

Summary . 77

3 Type System. 79

Introduction . 79

HIERARCHYID . 79

Compact Design. 80
Creating and Managing a Hierarchy. 80

Indexing. 89

Working with HIERARCHYID . 93

7/1/2008 6:56:44 PM

A05T625587.indd
Table of Contents ix

FILESTREAM. 98

Configuring FILESTREAM . 98

Using FILESTREAM. 101

Spatial Data Types . 104

Types of Spatial Data . 105

Working with the Spatial Data Types . 105

Spatial Indexing . 110

Spatial in the World . 113

XML Data Type . 115

XML Schema Validation Enhancements . 115

XQuery. 122

New Date and Time Data Types . 125

New Data and Time Functions and Functionality 127

Notes on Conversion. 130

User-Defined Table Types and Table-Valued Parameters 131

User-Defined Table Type . 131

Table-Valued Parameters . 132

Table-Valued Parameters in Action. 134

Summary . 138

4 Programmability . 139

Variable Declaration and Assignment. 139

Table Value Constructor Through VALUE Clause . 142

Merge. 144

The WHEN Clauses. 146

GROUP BY GROUPING SETS. 155

GROUPING SETS. 156

ROLLUP . 158

CUBE. 160

GROUPING_ID . 162

Miscellaneous Thoughts . 163

Object Dependencies . 164

CLR Enhancements. 165

Large Aggregates. 165

Large User-Defined Types . 169
Null Support . 169

Order Awareness . 170

System CLR Types. 172

 9 7/1/2008 6:56:44 PM

x

A05T625587.indd 10
Table of Contents

SQL Server Management Studio Enhancements . 172

Intellisense. 172

Service Broker Enhancements in SSMS . 175

PowerShell. 177

Summary . 178

5 Storage . 179

Introduction . 179

Sparse Columns . 179

What Is a Sparse Column? . 179

When to Use Sparse Columns . 180

Sparse Column Rules and Regulations . 186

Column Sets . 187

Filtered Indexes. 191

Filtered Index . 191

Filtered Statistics . 196

Summary . 197

6 Enhancements for High Availability . 199

Database Mirroring Enhancements in SQL Server 2008 199

Automatic Page Repair . 200

Log Performance Enhancements . 202

Transparent Client Redirection . 203

SQL Server Clustering Enhancements. 204

Windows Server 2008 Clustering Enhancements 204

SQL Server Cluster Setup and Deployment Improvements 206

Rolling Upgrades and Patches . 206

Cluster Validation Tool . 207

High-Availability-Related Dynamic Management Views
Enhancements . 208

Summary . 208

7 Business Intelligence Enhancements . 211

SQL Server Integration Services Enhancements . 211
Performing ETL. 211

Lookup. 214

Data Profiling . 216

Other New Features. 218

7/1/2008 6:56:44 PM

i

A05T625587.indd 11
Table of Contents x

SQL Server Reporting Services . 219

Report Designer in SQL Server Business Intelligence
Development Studio . 219

Report Builder . 221

New Controls in Both Authoring Environments . 222

Microsoft Office Rendering . 225

SQL Server Analysis Services . 226

Block Computation . 226

Analysis Services Enhanced Backup . 228

Enhancement to Writeback Performance . 229

Scalable Shared Databases for SSAS. 230

Other New Features. 230

Summary . 231

Index . 233
7/1/2008 6:56:44 PM

A05T625587.indd 12 7/1/2008 6:56:44 PM

A06F625587
Foreword

A few years ago, I began to discover our home laptop was turned off nearly every time I
went to use it. I asked my wife, Claudia, to leave it on, especially in the early evening when we
found ourselves using it the most. However, the trend of finding it in the off state continued.
As I headed down the stairs to the living room, I discovered that she was not the culprit. I
watched in awe as my then two-and-a-half-year-old son pressed the power button (which
glowed an inviting blue color). He then moved the mouse until the pointer was over the even
more enticing red Turn Off button on the screen, and then he clicked the mouse.

I was so proud!

Christopher hadn’t been taught how to do this feat; he simply watched us and then at-
tempted it himself, and with great success. I realized that there are some things about using a
computer that are essentially innate. My daughter, Kate, who is still not quite two years old, is
already trying to follow in his footsteps.

Yes, our kids have had all the usual milestones (walking, talking, and so on), but certain ones,
such as shutting down Windows XP, were not on the list of things to watch for. I can’t wait to
see what they do next.

On to business…

Of course, learning to use SQL Server requires a little more foundation than the instinctive
basics of moving and clicking a mouse; this is where learning materials such as this book
come into play. I had the good fortune of being able to not only dig deep into this product,
but to have access to some people who helped design and implement it. For me, learning
in this manner allowed me to get some great insight. I hope this work gives you enough in-
formation and insight so that you can dig deeper into this latest release and to use it to the
fullest extent. And may I suggest that you let your inner child take the reins and guide your
exploration into the world of SQL Server 2008.
xiii

.indd 13 6/30/2008 4:38:51 PM

A06F625587.indd 14 6/30/2008 4:38:51 PM

A07A625587.in
Acknowledgments

There are so many people who deserve kudos.

First of all, my most sincere gratitude to my wife, Claudia, and my children, Christopher and
Kate, who continually give me reason to keep moving forward and to better myself. I love
you all so very much.

I’d like to offer my gratitude to Drs. Greg Low and Mark Whitehorn, both of whom are ex-
perts when it comes to SQL Server, and so much more, and both of whom are contributing
authors to this work—and nice fellows to boot.

Much deserved thanks go to the people at Microsoft who kept things organized and kept
me in line while writing this book. This work could not happen without such a great editorial
team: Ken Jones, Kathleen Atkins, Sandra Haynes, Carol Vu, Pavel Kolesnikov, Carol Whitney,
Devon Musgrave, Elizabeth Hansford, Joanne Hodgins, Linda Engelman, Rosemary Caperton,
Kimberly Kim, Lori Merrick, Julie Strauss, and Jennifer Brown.

Other people at Microsoft played a crucial role in the technical quality of this book. And so
I offer my thanks (in no particular order) to Andrew Richardson, Bill Ramos, Torsten Grabs,
Boris Baryshnikov, Buck Woody, Carolyn Chau, Chris Lee, Christian Kleinerman, Colin Lyth,
Ram Ramanathan, Roni Karassik, Sean Boon, Sethu Kalavakur, Srini Acharya, T.K. Anand,
Thierry D’Hers, Maria Balsamo, Xiaoyu Li, Max Verun, Matt Masson, Lin Chan, Kaloian
Manassiev, Jennifer Beckmann, Il-Sung Lee, and Carl Rabeler.

Several people at Microsoft took extra time to work with me in past and recent times so that
I may better understand the new technologies. To these people, I offer my gratitude (again,
in no particular order): Hongfei Guo, Michael Rys, Isaac Kunen, Gert Drapers, Donald Farmer,
Kevin Farlee, Dan Jones, Michael Wang, and the late and much missed Ken Henderson.

To all of my fellow bloggers at SQLblog.com—you have helped to create a great online re-
source for anyone wanting to know more about SQL Server: Aaron Bertrand, Adam Machanic
(my SQLblog partner in crime), Alberto Ferrari, Alexander Kuznetsov, Allen White, Andrew
Kelly, Andy Leonard, Ben Miller, Denis Gobo, Erin Welker, Greg Low, Hilary Cotter, Hugo
Kornelis, James Luetkehoelter, Joe Chang, John Paul Cook, Kalen Delaney, Kent Tegels, Kevin
Kline, Kirk Haselden, Lara Rubbelke, Linchi Shea, Louis Davidson, Marco Russo, Michael Rys,
Michael Zilberstein, Michelle Gutzait, Mosha Pasumansky, Paul Nielsen, Richard Hundhausen,
Rick Heiges, Roman Rehak, Rushabh Mehta, Sarah Henwood, and Tibor Karaszi.

I also want to thank my friends and colleagues at Wintellect, Solid Quality Mentors, and Ted
xv

Pattison Group. Many of these folks played a part, directly or indirectly, in helping me with
the content of this book and with allowing me to finish this work while minimizing the time I
had to spend away from my family.

dd 15 6/30/2008 4:38:38 PM

xvi

A07A625587.indd 1
Acknowledgments

And this wouldn’t be complete without thanking all of my fellow colleagues and SQL Server
MVPs (both past and present) who so diligently worked with the beta of SQL Server 2008.
I watched conversations about the product on the newsgroups and forums and had many
face-to-face chats about the new technologies. Although the list of contributors is too long
to show here, I do want to mention a couple of folks who played a more active role in help-
ing throughout the writing process: Adam Machanic, Paul Nielsen, Roman Rehak, Randy
Dyess, Erin Welker, Srikkant Sridharan, Sean McCown, and Trevor Barkhouse.
6 6/30/2008 4:38:38 PM

A08I625587.in
Introduction

This book is about SQL Server 2008.

(Now if only it were that simple.)

Take 2…

Welcome to Microsoft SQL Server 2008 (AKA “Yukon”). Many people have been speculating
that the changes from version 2000 to 2005 were more dramatic than those changes that
have occurred from 2005 to 2008. Yes, SQL Server 2005 was revolutionary in many respects,
but SQL Server 2008 is not without some amazing new features and capabilities.

This book is divided into seven main topics: Security and Administration, Performance, Type
System Enhancements, Programmability, Storage, Enhancements for High Availability, and
Business Intelligence Enhancements. Each chapter will hopefully offer you insight into the
new or improved features in each of these main areas. And, although the book covers a lot
of ground, it is not an exhaustive tome, and, alas, not everything new or improved is con-
tained in this book. I leave those additional details to Books Online and fellow authors who
will inevitably write more comprehensive titles.

T-SQL: Still Here to Stay

Since the integration of common language runtime (CLR)-based code into SQL Server 2005
was known on the streets, people have been speculating about its role in database develop-
ment. On many occasions, I heard people speaking of T-SQL as if it was being deprecated.
Even now, as the CLR integration has been enhanced, and even with the introduction of sys-
tem CLR types, T-SQL is still not going anywhere—and it is still most often the best choice for
retrieving and manipulating data.

Goals

The objective of this book is not to give an in-depth view of the new features of SQL Server
2008; it is a beta edition, after all, and is still subject to changes. Rather, the objective of this
book is to [hopefully] help people begin to grasp what can be done with SQL Server 2008.
The book is part conceptual, exploring the new features and abilities of this next generation
xvii

enterprise database product, and it is part tangible, demonstrating features via C# code and
a new and improved T-SQL. I hope to give you enough knowledge to get your feet wet and
to explore further.

dd 17 6/30/2008 4:38:26 PM

xviii

A08I625587.indd 18
Introduction

I have always been a “learn by example” kind of person, so this book is filled with a lot of
samples and examples to help demonstrate the concepts. Many more examples come with
SQL Server 2008. I suggest you explore, poke, and prod these examples as well.

Working with Samples

Much of the sample code in this book is designed around the various Adventure Works Cycles
sample database. You can download these sample databases from www.codeplex.com. SQL
Server 2008 Books Online has more information about these sample databases, including
comparisons to both pubs and Northwind and a complete data dictionary for these sample
databases.

Who Should Read This Book

Everyone should read this book, as I’m still trying to be the first technical author on the New
York Times bestseller list! Since I don’t really expect to make that goal, I should mention that
there is an audience (albeit smaller than the millions required for the bestseller list) who
could benefit from this book. This group primarily includes those people who will be involved
in some capacity with a migration to SQL Server 2008 and people who currently work with
SQL Server 2000 and 2005 who want to see the exciting new changes in SQL Server 2008.

So should you read this book? If you are interested in learning what new features are avail-
able in SQL Server 2008 and you want to know how to begin using these new and improved
tools, I suggest this book as a starting point for that learning.

Disclaimer

As with any beta product, you should know that the things discussed in this book can change
before final release. Features can be removed, added, or modified as necessary to release a
solid software product.

System Requirements

This book makes use of not one but two products—SQL Server 2008 (CTP 6) and Visual
Studio.NET 2008. For some of the work, you will need to have both products installed in

order to run code, try examples, and so on. For a majority of the content of this book, how-
ever, an installation of SQL Server 2008 will suffice. These products are available through a
variety of avenues, including MSDN Subscriptions and the Beta Programs.

6/30/2008 4:38:26 PM

A08I625587.indd 19
Introduction xix

You can run SQL Server 2008 on Windows Vista, Windows XP (SP1 or later), and Windows
2003. It also requires version 3.5 of the .NET Framework, so even if you do not install Visual
Studio 2008, you will still be required to install the framework. Fortunately, the installation
program does this for you.

Support

Every effort has been made to ensure the accuracy of this book. Microsoft Press provides
support for books and companion content at the following Web site: http://www.microsoft.
com/learning/support/books.

If you have comments, questions, or ideas regarding the materials in this book, or
questions that are not answered by visiting the site just mentioned, please send them to
msinput@microsoft.com. You can also write to us at:

Microsoft Press
Attn: Programming Microsoft Office Business Applications Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through these addresses.
6/30/2008 4:38:26 PM

A08I625587.indd 20 6/30/2008 4:38:26 PM

C01625587
Chapter 1

Security and Administration

Introduction

With all the complexity of today’s IT shops and with stronger security measures being re-
quired by both the high-tech industry and by government regulations, we are going to need
some new tools to help us make our way through the new world of IT. SQL Server 2005 made
leaps and bounds in advances for security and management, providing the ability to more
easily manage and secure servers with features such as certificate and key-based encryption
and more full-featured tools. SQL Server 2008 takes these measures even further, provid-
ing the ability to more easily manage and secure database servers, with new features such
as policy-based management, external key management, server and database auditing, and
transparent data encryption.

Policy-Based Management

Have you ever had to ensure that only Windows logons or groups were added to Microsoft
SQL Server, or that xp_cmdshell was disabled, or that no stored procedure names started
with “sp_”? Did you ever have to do this to more than one server in your enterprise? I have,
and it was always such a hassle to go from server instance to server instance, querying sys-
tem objects, checking various configuration settings, and scouring through all sorts of places
to ensure that your SQL Server instances were all compliant. That process has changed in SQL
Server 2008.

Policy Management in SQL Server 2008

Yes, it’s true. SQL Server 2008 introduces a new feature known as the Policy-Based
Management. This framework allows you to define policies on a variety of objects and then
either manually or automatically prevent changes based on said policies. Management is also
very simple using SQL Server Management Studio (preferred), or you can write your own
code to manage policies. But I am getting ahead of myself. Let’s start at the beginning.
1

This management framework allows you to easily and proactively manage a variety of poli-
cies, ranging from security to metadata. It does this in two ways:

It allows you to monitor changes to these policies, with options to manually check poli-
cies, check policies on schedule, check policies on change and log violations, or check
policies on change and prevent the change if the policy is violated.

.indd 1 6/30/2008 2:07:21 PM

2

C01625587.indd
Introducing SQL Server 2008

It allows you to manage one or more SQL Server instances on a single server or across
multiple servers.

Rather than waiting for something to go awry, you can set policies based on your server
specifications and then have the framework proactively prevent changes based on these
policies or inform you via policy logs when these policies are being violated. The ability to
prevent certain changes depends on the type of feature, or facet, for which you are creating
a policy. For example, if you want to ensure that xp_cmdshell is never turned on for any sever
you are managing, you can create a policy and have it inform you when a change occurs or
even have it check for changes on a schedule, but you cannot prevent it from being changed.
The ability to prevent changes varies from facet to facet.

Policy-Based Management in SQL Server Management Studio

The practice of creating and enforcing policies is easily achieved using SQL Server
Management Studio. Policy-Based Management is accessed primarily by the Policy
Management node in Object Explorer, which can be found under the Management node of
the SQL Server instance, as shown in Figure 1-1.

FIGURE 1-1 Policy Management in Object Explorer
Within this node of Object Explorer, you find the three base items of the framework: Policies,
Conditions, and Facets. Although not shown as a node, Policy Category Management can
also be accessed from here by right-clicking on the Policy Management node of Object
Explorer and choosing Manage Categories. So what does each of the objects do to help you

 2 6/30/2008 2:07:21 PM

C01625587.indd 3
Chapter 1 Security and Administration 3

implement policy-based management? Let’s dig into each of them in more detail and dis-
cover how they are used.

Policy-Based Management Objects

Policy-Based Management uses fi ve different objects to manage policies: facets, conditions,
policies, targets, and categories.

Facets

Facets are the base units of this framework. Facets are types of objects, such as a Surface
Area feature, server, logon, database, user, and so on. Each facet has a set of predefi ned
properties against which conditions can be created.

As of the Community Technology Preview 6 (CTP6) release, there are a total of 47 facets, with
a whopping 1,492 total properties. SQL Server Management Studio has a list of these facets
under the Facets node in Objects Explorer (found under Management, Policy Management).
Alas, if you want to see each list of properties, you need to open each facet’s properties in-
dividually. If you want a quick list of all facets and properties, however, you can use the SQL
Server Management Objects (SMO) to iterate through all available facets and properties, as
shown here:

FacetInfoCollection fic = PolicyStore.Facets;

IEnumerable<FacetInfo> fic_sorted = from fic_i in fic

 orderby fic_i.DisplayName

 select fic_i;

Int32 pcount;

foreach (FacetInfo fi in fic_sorted)

{

 Console.WriteLine(“FACET: “ + fi.DisplayName);

 IEnumerable<PropertyInfo> fi_sorted = from fi_i in fi.FacetProperties

 orderby fi_i.Name

 select fi_i;

 pcount = 0;

 foreach (PropertyInfo pi in fi_sorted)

 {

 if (pcount++ > 0)

 Console.Write(“, “ + pi.Name);

 else

 Console.Write(pi.Name);

 }

FacetInfoCollection fic = PolicyStore.Facets;

IEnumerable<FacetInfo> fic_sorted = from fic_i in fic

 orderby fic_i.DisplayName

 select fic_i;

Int32 pcount;

foreach (FacetInfo fi in fic_sorted)

{

 Console.WriteLine(“FACET: “ + fi.DisplayName);

 IEnumerable<PropertyInfo> fi_sorted = from fi_i in fi.FacetProperties

 orderby fi_i.Name

 select fi_i;

 pcount = 0;

 foreach (PropertyInfo pi in fi_sorted)

 {

 if (pcount++ > 0)

 Console.Write(“, “ + pi.Name);

 else

 Console.Write(pi.Name);

 }
 Console.WriteLine();

 Console.ReadLine();

}

Console.WriteLine(“---End of List---”);

Console.ReadLine();

 Console.WriteLine();

 Console.ReadLine();

}

Console.WriteLine(“---End of List---”);

Console.ReadLine();

6/30/2008 2:07:21 PM

C016255
4 Introducing SQL Server 2008

Facets by themselves cannot do anything in establishing policies. They can be used by condi-
tions, however, to define what rules you want to create and against which servers, databases,
or other objects the policies should check.

Conditions

A condition is an expression that defines the desired state of a facet. You express a condition
by setting a facet property, a comparative operator, and a value. Each property condition’s
state is set according to its respective data type. For example, the Name property of the
Stored Procedure facet is of type String and can have a condition operator of equal (=), not
equal (!=), LIKE, NOT LIKE, IN, or NOT IN. Thus it can be compared with a string or a list of
strings. The SQL Mail property of the Surface Area facet is of data type Boolean, and thus it
has only the equality and inequality operators and can only be set to a value of true or false.

Note There is an advanced expression editor (the Advanced Edit dialog box) available if you
need to create a specialized condition check. For example, you can check that the name of a
table doesn’t equal the schema name or that all tables have a primary key. The advanced expres-
sion editor allows a lot of flexibility, but when used in a condition, its respective policy can only
be executed On Demand.

Both the field and expression value can be set using the advanced expression editor. In addition
to providing a custom expression, it also provides an explanation of the available functions and
a description of the facet properties. So if you are not sure what the property represents, you do
not need to go to the facet and open it; you can simply click the ellipsis button (…) and examine
the properties from there.

Furthermore, a condition can also only contain properties from a single facet type. For ex-
ample, you can create a condition that states “SQL Mail is disabled and Database Mail is
disabled” because both of these properties are part of the Surface Area facet. You cannot,
however, create a condition that states “stored procedure names must begin with ‘pr’ and
xp_cmdshell is disabled” because these two properties are part of two different facets (the
Stored Procedure facet and Surface Area facet, respectively).

You can, however, create multiple conditions based on the same underlying facets. So you
can create a condition that states “SQL Mail is disabled and Database Mail is disabled,” and
you can create a second condition that states “SQL Mail is disabled and Database Mail is en-
abled.” Of course, you wouldn’t want to have both policies on the same server because one

of the policies will always be in violation.

SQL Server 2008 comes with an assortment of predefined conditions that you can imme-
diately put into use. For example, one of my favorites is the condition named Auto Shrink
Disabled, which can be used by a policy to ensure that databases do not enable the auto
shrink option. Figure 1-2 shows this particular condition in the Open Condition window.

87.indd 4 6/30/2008 2:07:22 PM

C01625587.indd 5
Chapter 1 Security and Administration 5

FIGURE 1-2 The Open Condition window

As I stated earlier in this section, you can also set multiple property states in a condition.
Multiple conditions can each be set with an OR or AND clause, and they follow the standard
order of operations. For example, Figure 1-3 shows an example of a new condition named
Mail Features Disabled that states both SQL Mail and Database Mail are disabled.
FIGURE 1-3 A new condition for disabled mail features

6/30/2008 2:07:22 PM

C0162558
6 Introducing SQL Server 2008

Policies

A policy is associated to a single condition and can be set to enforce or check the condition
on one or more servers. The Execution Mode of the policy determines how a policy is en-
forced. Execution Mode can be set to one of four values:

On Demand Do not check or enforce the policy. This is used to manually check
policies.

On Schedule Check the policy on a set schedule and log if policy is violated.

On Change - Log Only Check the policy whenever a change occurs to the associated
facet properties and log if the policy is violated.

On Change - Prevent Check the policy whenever a change occurs to the associated
facet properties and, if the policy is violated, prevent the change.

All policies can have an execution mode of On Demand or On Schedule. Only some, however,
can be set to On Change - Log Only or On Change - Prevent. The execution mode setting of
a policy is determined by the condition’s underlying facet of the policy. Properties of certain
facets can prevent attempted changes, whereas other facets can be checked on changes but
only log when the policy is violated, and still others only checked on schedule.

Note The execution mode also determines whether the policy needs to be enabled or not. If
the execution mode is set to On Demand, then the policy must be disabled. For all other execu-
tion modes, the policy can be enabled or disabled as needed. Keep in mind that if a policy is
disabled, even if its execution mode is set to On Change - Prevent, it will not be checked and will
not be automatically enforced.

How can you tell which facets support which execution modes? A quick query of the syspolicy_
management_facets system view can give you the answer:

USE msdb;

GO

; WITH AutomatedPolicyExecutionMode (ModeId, ModeName)

AS

(SELECT *

 FROM

 (VALUES (0, ‘On Demand’)

USE msdb;

GO

; WITH AutomatedPolicyExecutionMode (ModeId, ModeName)

AS

(SELECT *

 FROM

 (VALUES (0, ‘On Demand’)
 , (1, ‘On Change - Prevent’)

 , (2, ‘On Change - Log Only’)

 , (4, ‘On Schedule’)

) AS EM(ModeId, ModeName)

)

 , (1, ‘On Change - Prevent’)

 , (2, ‘On Change - Log Only’)

 , (4, ‘On Schedule’)

) AS EM(ModeId, ModeName)

)

7.indd 6 6/30/2008 2:07:23 PM

C01625587.indd 7
Chapter 1 Security and Administration 7

SELECT

 pmf.[management_facet_id] AS FacetID

 , pmf.[name] AS FacetName

 , APEM.[ModeName]

FROM syspolicy_management_facets AS pmf

 INNER JOIN AutomatedPolicyExecutionMode AS APEM

 ON pmf.[execution_mode] & APEM.[ModeId] = APEM.[ModeId]

ORDER BY pmf.[name], APEM.[ModeName]

This query will show you a list of facets and their supported execution modes. Abridged re-
sults are shown here:

FacetID FacetName ModeName

1 ApplicationRole On Change - Log Only

1 ApplicationRole On Change - Prevent

1 ApplicationRole On Demand

1 ApplicationRole On Schedule

2 AsymmetricKey On Demand

2 AsymmetricKey On Schedule

3 Audit On Demand

3 Audit On Schedule

4 BackupDevice On Demand

4 BackupDevice On Schedule

5 CryptographicProvider On Demand

5 CryptographicProvider On Schedule

6 Database On Change - Log Only

6 Database On Demand

6 Database On Schedule

How the policy is enforced is only a part of the concept of policies. Figure 1-4 shows an ex-
ample of a policy that checks the Mail Features Disabled condition but does it only in SQL
Server 2005 or later.

SELECT

 pmf.[management_facet_id] AS FacetID

 , pmf.[name] AS FacetName

 , APEM.[ModeName]

FROM syspolicy_management_facets AS pmf

 INNER JOIN AutomatedPolicyExecutionMode AS APEM

 ON pmf.[execution_mode] & APEM.[ModeId] = APEM.[ModeId]

ORDER BY pmf.[name], APEM.[ModeName]

FacetID FacetName ModeName

1 ApplicationRole On Change - Log Only

1 ApplicationRole On Change - Prevent

1 ApplicationRole On Demand

1 ApplicationRole On Schedule

2 AsymmetricKey On Demand

2 AsymmetricKey On Schedule

3 Audit On Demand

3 Audit On Schedule

4 BackupDevice On Demand

4 BackupDevice On Schedule

5 CryptographicProvider On Demand

5 CryptographicProvider On Schedule

6 Database On Change - Log Only

6 Database On Demand

6 Database On Schedule
6/30/2008 2:07:23 PM

8

C01625587.indd 8
Introducing SQL Server 2008

FIGURE 1-4 A new policy for Mail Features

Target Sets

Conditions are the basis for checks done by policies, but they can also be used to filter poli-
cies against target sets. A target set consists of one or more objects in the object hierarchy
(i.e., server, database, and table) and conditions used to filter which of these objects the
policy checks.

Target sets are broken into two categories. The first is for the server, which is used to filter
which servers the policy performs its checks. The second is for the hierarchy of the database
and its child objects (tables, views, stored procedures, and so on). For example, suppose
you are implementing a policy for a condition that states Database Mail and SQL Mail are
disabled. Such a policy wouldn’t be applicable for SQL Server 2000, so you would want the
policy to apply only to SQL Server 2005 or a later version.

The first step would be to create a condition for Database Mail and SQL Mail disabled (as
shown in a previous example for the condition named Mail Features Disabled). Next you
would create a condition, as shown in Figure 1-5, for the server’s major version greater than
or equal to 9 (SQL Server 2000 is version 8, 2005 is version 9, and 2008 is version 10). This

condition named SQL Server 2005 Or A Later Version is actually created as a predefined con-
dition on installation of SQL Server 2008.

6/30/2008 2:07:23 PM

C01625587.indd 9
Chapter 1 Security and Administration 9

FIGURE 1-5 Condition for SQL Server version 9 (2005) or greater

Finally, you would create the policy that would check the Mail Features Disabled condi-
tion but additionally specify the SQL Server 2005 Or A Later Version condition in the Server
Restriction drop-down list, as shown earlier in Figure 1-4.

Another way to use a condition to define a target set is by way of the Against section of the
policy, which allows you to create the target set for the database hierarchy. For example, per-
haps you want to enforce a naming convention for tables such that tables cannot start with
the prefix “tbl.” First you create a condition named Table Name on the Table facet that states:
@Name NOT LIKE ‘tbl%’. From here, you create a policy named Table Name Best Practice
that checks the Table Name condition. Next, in the Against section, you specify that the
check is only done against Non-System Tables in Online User Database (two more predefined
conditions that come installed with SQL Server 2008). Now the check would only apply to
non-system tables in online user databases. Figure 1-6 shows this policy and how you can
choose the target condition for database.

You may have noticed that the policy that used the Mail Features Disabled condition didn’t
have any option available in the Against Targets section. The reason for this is that the
Against Targets section applies only to objects lower than server in the hierarchy. The Server
Restriction option applies for servers themselves, so if your policy is based on a condition that

is at the server level (server, server performance, server configuration, and so on), it will not
have any options for lower-level target sets (such as databases, tables, columns, and so on).

6/30/2008 2:07:24 PM

10

C01625587.indd 10
Introducing SQL Server 2008

FIGURE 1-6 Policy with target filter

By using targets, however, in conjunction with condition checks, you can use different types
of underlying facets in a single policy by using a condition for the check and for each level in
the object hierarchy.

Policy Categories

Policy categories are used to group policies and can be used to force policy checks or allow
database owners to optionally subscribe to a set of policies. A policy can belong to only one
policy category, either user-defined or the Default category. Policy categories can be created
on the fly when defining a policy and can be further managed through the Manage Policy
Categories dialog box. In this dialog box, one can also determine if category subscriptions at
the database level are mandated or optional, as shown in Figure 1-7.

Yes, you read that correctly—mandated. You can create and enable a set of policies, group
them in one or more policy categories, and then force all databases to subscribe to these
policies.

If you don’t assign a policy to a policy category, it is placed in the Default policy category,
which always mandates a subscription from databases. Unlike other policy categories, the
Default policy category cannot be changed to optionally allow subscriptions. So if you put a

policy in this policy category and the policy is enabled and enforced (On Change - Prevent),
then all databases will have to comply. If you want the ability to optionally allow subscrip-
tions to the policy category, you must add the policy to a policy category other than Default

6/30/2008 2:07:24 PM

C01625587.indd 11
Chapter 1 Security and Administration 11

and then use the Manage Policy Categories dialog box to set the policy category mandate
subscription option as false (clear the check box).

FIGURE 1-7 The Manage Policy Categories dialog box

Policy Checking and Preventing

As mentioned earlier in this chapter, not all policies can be set to prevent changes when a
policy is violated, but you can check policies and log violations, both on change or on sched-
ule. But what happens when you do a manual check and you fi nd a policy is being violated?
What is the process to remedy the violation on the server, database, and so on?

Let’s revisit an example from earlier in the chapter. You create a policy that states “SQL Mail
and Database Mail should both be disabled.” You set its Execution Mode to On Demand and
leave the policy disabled. Now, how do you go about checking the policy?

First we are going to set the server confi guration so that it will violate the policy by running
the following Transact-SQL (T-SQL) code.

--Run this first to see advanced options

EXEC sp_configure ‘show advanced options’, 1

RECONFIGURE WITH OVERRIDE

--Run this first to see advanced options

EXEC sp_configure ‘show advanced options’, 1

RECONFIGURE WITH OVERRIDE
--Run this second to change the mail configuration

EXEC sp_configure ‘Database Mail XPs’, 1

EXEC sp_configure ‘SQL Mail XPs’, 0

RECONFIGURE WITH OVERRIDE

--Run this second to change the mail configuration

EXEC sp_configure ‘Database Mail XPs’, 1

EXEC sp_configure ‘SQL Mail XPs’, 0

RECONFIGURE WITH OVERRIDE

6/30/2008 2:07:24 PM

C01625587
12 Introducing SQL Server 2008

Now your server will fail the policy check. Next, we evaluate the policy by right-clicking on
the SQL Server instance in Object Explorer and choosing Policies, then View, as shown in
Figure 1-8.

FIGURE 1-8 Opening the View Policies dialog box

This will bring up the View Policies dialog box, shown in Figure 1-9, where you can view in-
formation about the policies, including whether the policy is enabled (Effective), the policy’s
category, the policy’s last execution, and comments. Here you can also click to see a history
of the policy and to evaluate the policy.

Note If you want to see a history of all policies, you can right-click the Policies node in Object
Explorer and, from the context menu, choose View History.

As shown in Figure 1-10, clicking Evaluate reveals that the server is violating the policy (as
expected because we purposefully ran script to violate the policy earlier in this section).
.indd 12 6/30/2008 2:07:25 PM

C01625587.indd 13
Chapter 1 Security and Administration 13

FIGURE 1-9 View Policies dialog box
FIGURE 1-10 Evaluate Policies dialog box for the Mail Features Disabled Policy

6/30/2008 2:07:26 PM

C01625587
14 Introducing SQL Server 2008

Clicking the Evaluate button will cause the policy to be checked again and will result in the
same thing—a policy that is in violation. But clicking the Confi gure button will simply fi x the
problem, as shown in Figure 1-11.

FIGURE 1-11 Resolving a policy violation

Indeed, a single click and you can remedy policy violations on the server. It makes the ap-
propriate changes to the confi guration and reruns the policy check, resulting in a policy that
is now compliant.

Note You can also view and test (check) individual policies by right-clicking the policy located
under the Policy node in Object Explorer, or you can view policies for other objects in Object
Explorer, such as a database or a table.

Policy-Based Management in Practice

At this point, we will run through a simple example of using the framework to enforce nam-
ing conventions on our tables, stored procedures, and functions. Here is a list of conditions
you will need to create:
Condition Name Facet Expression

Stored Procedure Name Stored Procedure @Name NOT LIKE ‘sp[_]%’

Table Name Table @Name NOT LIKE ‘tbl%’

Function Name User Defi ned Function @Name LIKE ‘fn%’

Condition Name Facet Expression

.indd 14 6/30/2008 2:07:26 PM

C01625587.indd 15
Chapter 1 Security and Administration 15

The next step is to create three corresponding policies that are all part of the same category
named Naming Conventions. All policies should use the default settings for Against Targets,
Server Restriction, and Enabled, and the Execution Mode should be set to On Change
- Prevent.

Policy Name Condition

Stored Procedure Name Policy Stored Procedure Name

Table Name Policy Table Name

Function Name Policy Function Name

Figure 1-12 shows an example of the Stored Procedure Name Policy and its appropriate
settings.

FIGURE 1-12 Stored Procedure Name Policy dialog box

By default, all new categories are set to mandate subscriptions, so using the
AdventureWorksLT example database, we can try to create the various objects, as shown
below.

USE AdventureWorksLT

GO

Policy Name Condition

USE AdventureWorksLT

GO
CREATE PROCEDURE sp_test

AS

 SELECT 1 As [one]

GO

CREATE PROCEDURE sp_test

AS

 SELECT 1 As [one]

GO

6/30/2008 2:07:27 PM

16

C01625587.indd 16
Introducing SQL Server 2008

CREATE TABLE tblTest

(

 tbltestID int NOT NULL,

 Description varchar(100) NULL

)

GO

CREATE FUNCTION fTest (@i INT)

RETURNS INT

AS

BEGIN

 RETURN @i * 2

END

GO

Running this script will result in the following:

Policy ‘Stored Procedure Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/StoredProcedure/dbo.sp__test’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

Policy ‘Table Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/Table/dbo.tblTest’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

Policy ‘Function Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/UserDefinedFunction/dbo.fTest’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

You will notice that there is additional information such as Policy Description, which is simply

CREATE TABLE tblTest

(

 tbltestID int NOT NULL,

 Description varchar(100) NULL

)

GO

CREATE FUNCTION fTest (@i INT)

RETURNS INT

AS

BEGIN

 RETURN @i * 2

END

GO

Policy ‘Stored Procedure Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/StoredProcedure/dbo.sp__test’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

Policy ‘Table Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/Table/dbo.tblTest’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

Policy ‘Function Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/UserDefinedFunction/dbo.fTest’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.
an empty string. You can include this additional description to add information in the policy.
Figure 1-13 shows an example of setting a description, help text, and URL for the Stored
Procedure Name Policy.

6/30/2008 2:07:27 PM

C01625587.indd
Chapter 1 Security and Administration 17

FIGURE 1-13 Policy description settings

Using the information shown in Figure 1-13, change the Stored Procedure Name Policy de-
scription information, and try to create the stored procedure again. The results will now show
(with changes shown in italics):

Policy ‘Stored Procedure Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/StoredProcedure/dbo.sp__test’.

This transaction will be rolled back.

Policy description: ‘The sp_ prefix for stored procedures is reserved for system

stored procedures.’

Additional help: ‘Creating a Stored Procedure (Database Engine)’ : ‘http://msdn2.

microsoft.com/en-us/library/ms190669(SQL.100).aspx’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.

Auditing SQL Server

Over the years I’ve seen and heard of a variety of solutions used to audit actions performed

Policy ‘Stored Procedure Name Policy’ has been violated by ‘/Server/(local)/Database/

AdventureWorksLT/StoredProcedure/dbo.sp__test’.

This transaction will be rolled back.

Policy description: ‘The sp_ prefix for stored procedures is reserved for system

stored procedures.’

Additional help: ‘Creating a Stored Procedure (Database Engine)’ : ‘http://msdn2.

microsoft.com/en-us/library/ms190669(SQL.100).aspx’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 50

The transaction ended in the trigger. The batch has been aborted.
in SQL Server. Prior to SQL Server 2005, it was diffi cult to easily and effi ciently audit particular
actions, such as when someone changed an object defi nition or when someone selected data
from a table or view. How did you know if someone added a column to a table or changed a
view’s defi nition or ran a select statement against a table?

 17 6/30/2008 2:07:27 PM

18

C01625587.indd 18
Introducing SQL Server 2008

C2 Audit Mode

One option was to use the C2 audit mode for SQL Server, available since SQL Server 2000.
However, a C2 audit captures a lot of audit events, and that could mean many megabytes per
minute on the hard disk of your default data directory. This could have some performance
implications for the server.

C2 audit mode is black and white as far as what is audited, so you are either auditing ev-
erything (C2 audit mode on) or nothing (C2 audit mode off). Switching between on and off,
however, requires a restart of the SQL Server instance.

To view the audit data, you could use SQL Profiler and load in the trace file. From there you
could push the trace file data into a table. Another option is to use the fn_trace_gettable sys-
tem function to view the data directly in SQL Server Management Studio (SSMS).

Other Audit Techniques

If C2 audit mode is more than you need, there are other creative techniques used to audit a
more specific set of actions. For example, you could “audit” selects against a table if you used
stored procedures as the basis for all select statements. You could audit metadata changes
by scripting the objects on a regular basis and comparing the versions. Data manipulation
language (DML) triggers can be used to audit changes to data. And although you can usually
find a solution, implementation is sometimes cumbersome, and each type of audit requires a
different type of solution.

SQL Server 2005 then introduced data definition language (DDL) triggers. This new feature
made auditing somewhat more manageable, allowing you to capture more efficiently chang-
es to metadata. I have had several clients benefit from even the most primitive of metadata
audits using DDL triggers. This new ability still only remedied one of the areas of auditing.

Many of you may be thinking, “I could use SQL Profiler and capture many of these events.”
And it’s true—you could run a trace to capture audit information. Traces, however, have to be
started every time the server restarts, and there are other limitations, especially when filter-
ing. For example, if you want to audit inserts into SalesOrder table for users in the Sales role
and you also want to audit inserts into the Customer table for users in the Marketing roles,
you would not be able to do so in a single trace. Your best bet would be to use multiple trac-
es or to trace inserts for both roles against both tables.

Auditing in SQL Server 2008
SQL Server 2008 brings auditing to a new level, with a robust auditing feature set. There are
81 securable types grouped into 22 classes. The securable types include items such as the
server, logins, certificates, tables, indexes, keys, roles, schemas, triggers, endpoints, and

6/30/2008 2:07:27 PM

C01625587.indd 19
Chapter 1 Security and Administration 19

message types. Each of these securable types can have a variety of actions audited. For ex-
ample, you can audit when someone changes the definition of, selects from, inserts into, de-
letes from, or updates a table.

The Audit

The first step for auditing is to create an Audit object. An Audit object is a container for audit
specifications, both at the server and database levels. It is associated with a single server in-
stance (audits do not work against multiple servers) and can record audit data to one of the
following locations:

The Application Event Log

The Security Event Log

The File System (one or more files on a local drive or network share)

Note The service account for the instance of SQL Server that is implementing an audit
needs to have enough privileges to do its job. So if writing to the file system, the service
account must be able to read, write, and modify. If writing to the Security Event Log, the
service account needs the Generate Security Audits user right (which is by default only
given to Local Service and Network Service), and the Windows Audit object needs to be
configured to allow access, which is done through auditpol.exe in Vista/W2K8 and secpol.
exe on earlier versions of Windows.

There are two ways to go about creating an audit. First, using Object Explorer in SSMS, navi-
gate to the <Server_Instance>/Security/Audits node. Right-click the node, and choose New
Audit. That will open the Create Audit dialog box, as shown in Figure 1-14.

This example is using a one second queue delay, meaning the audit will write its data asyn-
chronously to the destination within one second of the event. Choosing a value of 0 for the
queue delay means processing is done synchronously and the transaction will block until
the data is written to the destination. This example also shows the audit data being sent to a
file location. Normally you would choose something other than your system drive, such as a
drive on a separate set of spindles or perhaps even a network share. You can also specify the
size of the audit files (and optionally reserve space for it) and the number of rollover files.

The Shut Down Server On Audit Log Failure option does exactly as it implies—if the audit
fails to work, the server instance shuts down. But what does it mean for an audit to fail?

Some might think that this means when a failure event is recorded, such as a login failure, it
causes the server to shut down. This is not true. Audit failure means the audit cannot record
audit event data. For example, if the above audit was created and enabled but there was no
directory C:\Audit\Security, then the audit would fail, and the server instance would shut
down. You can restart the service, however, because the audit will be disabled because it

6/30/2008 2:07:27 PM

20

C01625587.indd 20
Introducing SQL Server 2008

failed to start. My suggestion is to only turn on this option after you’ve fi rst tested the audit
with this option off.

FIGURE 1-14 The Create Audit dialog box

Now for all of you who prefer to be able to script such changes, here is the equivalent action
as done in T-SQL.

USE [master]

GO

CREATE SERVER AUDIT [SecurityAudit]

TO FILE

(FILEPATH = N’C:\Audit\Login\’

 ,MAXSIZE = 10 MB

 ,MAX_ROLLOVER_FILES = 100

 ,RESERVE_DISK_SPACE = ON

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = SHUTDOWN

 ,AUDIT_GUID = ‘ab562f41-f4ad-af4c-28a0-feb77b546d89’

)

USE [master]

GO

CREATE SERVER AUDIT [SecurityAudit]

TO FILE

(FILEPATH = N’C:\Audit\Login\’

 ,MAXSIZE = 10 MB

 ,MAX_ROLLOVER_FILES = 100

 ,RESERVE_DISK_SPACE = ON

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = SHUTDOWN

 ,AUDIT_GUID = ‘ab562f41-f4ad-af4c-28a0-feb77b546d89’

)

GO

All of the options that were available in the graphical user interface (GUI) dialog box are
available using T-SQL. Using T-SQL, however, you have more fl exible settings. Sure, either
method allows you to specify up to 2,147,483,647 rollover fi les, but only using T-SQL can you

GO

6/30/2008 2:07:28 PM

C01625587.indd
Chapter 1 Security and Administration 21

set the maximum fi le size up to 16,777,215 terabytes. If you happen to have more disk space
available, you can simply specify UNLIMITED (equivalent to selecting 0 when using the dialog
box). And only using T-SQL can you set the globally unique identifi er (GUID) for the server
audit. However, you cannot use a variable to do so, for the value must be static (unless you
use dynamic SQL, of course). For example, the following T-SQL would raise an exception.

USE [master]

GO

DECLARE @guid UNIQUEIDENTIFIER = NEWID()

--This will fail

CREATE SERVER AUDIT [SecurityAudit]

TO FILE

(FILEPATH = N’C:\Audit\Login\’

 ,MAXSIZE = 10 MB

 ,MAX_ROLLOVER_FILES = 100

 ,RESERVE_DISK_SPACE = ON

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = SHUTDOWN

 ,AUDIT_GUID = @guid

)

GO

Note Why specify a GUID for an audit? To allow failover scenarios where you have database
audit specifi cations and the database may fail over from one server to another and you want the
audit to fail over as well. You defi ne an audit on each server with the same GUID because the
audit specifi cations link to audits by GUID.

Finally, you may be asking yourself what happens if you do reach the maximum fi le size for
the maximum number of rollover fi les. It starts to roll over on the existing fi le(s). So if you
have a maximum fi le size of 100 MB and a maximum of 10 rollover fi les, then you will have at
most 1000 MB of audit data.

Audit Specifi cations

USE [master]

GO

DECLARE @guid UNIQUEIDENTIFIER = NEWID()

--This will fail

CREATE SERVER AUDIT [SecurityAudit]

TO FILE

(FILEPATH = N’C:\Audit\Login\’

 ,MAXSIZE = 10 MB

 ,MAX_ROLLOVER_FILES = 100

 ,RESERVE_DISK_SPACE = ON

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = SHUTDOWN

 ,AUDIT_GUID = @guid

)

GO
An audit is not very useful until it has audit specifi cations. These specifi cations determine
which actions the audit records. An audit can have one server audit specifi cation and one da-
tabase audit specifi cation per database.

 21 6/30/2008 2:07:28 PM

22

C01625587.indd 22
Introducing SQL Server 2008

Server Audit Specifi cations

Regardless of what action is being audited, these specifi cations audit at the server instance
level and, therefore, exist only in the master database. Server audit specifi cations use server-
level audit action groups to determine what actions are audited. These groups contain one or
more actions that are audited at the server level. For example, the TRACE_CHANGE_GROUP
is a container for fi ve trace-related actions: starting a trace, stopping a trace, altering a trace,
enabling a C2 trace audit, and disabling a C2 trace audit. The SCHEMA_OBJECT_ACCESS_
GROUP, however, has 15 actionable events that can be audited.

Following the previous example, let’s add a server audit specifi cation that audits actions for
failed logins and for changes related to login passwords, which includes resetting the pass-
word, changing a password, unlocking an account, and so on.

USE [master]

GO

CREATE SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 FOR SERVER AUDIT [SecurityAudit]

 ADD (FAILED_LOGIN_GROUP),

 ADD (LOGIN_CHANGE_PASSWORD_GROUP)

 WITH (STATE=ON)

GO

You will fi rst notice that the server audit specifi cation is being created in the context of the
master database because it must be created in the master database. If the database context
was otherwise, the statement would fail. When creating a server audit specifi cation, you need
to associate it with a server audit, and then you can optionally begin to specify the server-
level audit action groups and its initial state, as shown in this example above.

When making changes to a specifi cation, you must fi rst disable it. This means that when us-
ing SSMS, you need to clear the Enabled check box to save the changes. Then, using Object
Explorer, you can right-click the specifi cation you just changed and choose to re-enable it
from the context menu. Using T-SQL for such changes means you fi rst alter the specifi cation
to disable it and then add the action groups and enable it using a second alter statement.

This next example shows how to add another action group using T-SQL, fi rst by changing
the state of the server audit specifi cation to Off, and then by adding the action group and
changing the state back to On.

USE [master]

GO

CREATE SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 FOR SERVER AUDIT [SecurityAudit]

 ADD (FAILED_LOGIN_GROUP),

 ADD (LOGIN_CHANGE_PASSWORD_GROUP)

 WITH (STATE=ON)

GO
USE [master]

GO

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 WITH (STATE=OFF)

USE [master]

GO

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 WITH (STATE=OFF)

6/30/2008 2:07:28 PM

C01625587.indd 23
Chapter 1 Security and Administration 23

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 ADD (SUCCESSFUL_LOGIN_GROUP)

 WITH (STATE=ON)

GO

What if you need to drop one of the audited action groups? The ALTER SERVER AUDIT
SPECIFICATION also has a DROP clause, which is used to remove action groups from the
specifi cation, as shown here.

USE [master]

GO

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 WITH (STATE=OFF)

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 DROP (SUCCESSFUL_LOGIN_GROUP)

 WITH (STATE=ON)

GO

One fi nal note: Server audit specifi cations use server-level action groups, which are all en-
compassing on the server instance. For example, creating a server audit specifi cation using
the action group SCHEMA_OBJECT_ACCESS_GROUP will audit all SELECT, INSERT, UPDATE,
DELETE, EXECUTE, RECEIVE, REFERENCES, and VIEW CHANGETRACKING for all objects in
all databases. If your auditing needs are more specifi c, then you can use database audit
specifi cations.

Database Audit Specifi cations

In some scenarios, you may not need to audit every database. You might want to audit only
certain objects in a particular database. Database audit specifi cations allow you to audit
more specifi c events in a particular database. Unlike server audit specifi cations, database
audit specifi cations can audit both action groups and actions. They can also audit actions on
specifi c database objects.

The following example continues from the previous examples, adding auditing for a variety
of security-related actions.

USE [AdventureWorksLT]

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 ADD (SUCCESSFUL_LOGIN_GROUP)

 WITH (STATE=ON)

GO

USE [master]

GO

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 WITH (STATE=OFF)

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecForLogin]

 DROP (SUCCESSFUL_LOGIN_GROUP)

 WITH (STATE=ON)

GO

USE [AdventureWorksLT]
GO

CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_Access]

FOR SERVER AUDIT [SecurityAudit]

ADD (DATABASE_ROLE_MEMBER_CHANGE_GROUP),

GO

CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_Access]

FOR SERVER AUDIT [SecurityAudit]

ADD (DATABASE_ROLE_MEMBER_CHANGE_GROUP),

6/30/2008 2:07:28 PM

24

C01625587.indd 24
Introducing SQL Server 2008

ADD (DATABASE_PERMISSION_CHANGE_GROUP),

ADD (DATABASE_OBJECT_PERMISSION_CHANGE_GROUP),

ADD (SCHEMA_OBJECT_PERMISSION_CHANGE_GROUP),

ADD (DATABASE_PRINCIPAL_IMPERSONATION_GROUP),

ADD (DATABASE_PRINCIPAL_CHANGE_GROUP),

ADD (DATABASE_OWNERSHIP_CHANGE_GROUP),

ADD (DATABASE_OBJECT_OWNERSHIP_CHANGE_GROUP),

ADD (SCHEMA_OBJECT_OWNERSHIP_CHANGE_GROUP)

WITH (STATE=ON)

GO

But what if you wanted to audit only when someone in the Marketing role issues a SELECT
statement against the Employees table? Instead of simply adding the action group, you can
also add a specifi c action, such as SELECT, but you must also specify a securable (class or ob-
ject) and a principal (user or role). This next example shows how to add an audit specifi cation
at the database level that will record whenever someone in the Marketing role selects data
from the Employees table in the HumanResources schema.

USE [SomeOtherDatabase]

GO

CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

FOR SERVER AUDIT [SecurityAudit]

ADD (SELECT ON [HumanResources].[Employees] BY [Marketing])

WITH (STATE=ON)

GO

After creating this specifi cation, we realize that we need a more general audit such that
we know when anyone selects, inserts, updates, or deletes data from any object in the
HumanResources schema. We can drop the original specifi cation for SELECT and add a more
general one that audits selects, inserts, updates, and deletes for all (applicable) objects in the
HumanResources schema.

USE [SomeOtherDatabase]

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

WITH (STATE=OFF)

ADD (DATABASE_PERMISSION_CHANGE_GROUP),

ADD (DATABASE_OBJECT_PERMISSION_CHANGE_GROUP),

ADD (SCHEMA_OBJECT_PERMISSION_CHANGE_GROUP),

ADD (DATABASE_PRINCIPAL_IMPERSONATION_GROUP),

ADD (DATABASE_PRINCIPAL_CHANGE_GROUP),

ADD (DATABASE_OWNERSHIP_CHANGE_GROUP),

ADD (DATABASE_OBJECT_OWNERSHIP_CHANGE_GROUP),

ADD (SCHEMA_OBJECT_OWNERSHIP_CHANGE_GROUP)

WITH (STATE=ON)

GO

USE [SomeOtherDatabase]

GO

CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

FOR SERVER AUDIT [SecurityAudit]

ADD (SELECT ON [HumanResources].[Employees] BY [Marketing])

WITH (STATE=ON)

GO

USE [SomeOtherDatabase]

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

WITH (STATE=OFF)
ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

DROP (SELECT ON [HumanResources].[Employees] BY [Marketing])

ADD (SELECT, INSERT, UPDATE, DELETE ON Schema::[HumanResources] BY [public])

WITH (STATE=ON)

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

DROP (SELECT ON [HumanResources].[Employees] BY [Marketing])

ADD (SELECT, INSERT, UPDATE, DELETE ON Schema::[HumanResources] BY [public])

WITH (STATE=ON)

GO

6/30/2008 2:07:28 PM

C01625587.indd 25
Chapter 1 Security and Administration 25

Note the syntax for a class (as opposed to a specifi c object), such as a schema, requires a pre-
fi x of the class name and a double colon, such as Schema::[SalesLT]. Because the database is
also an object, you can also make this audit specifi cation apply to all (applicable) objects in
the database, as follows.

USE [SomeOtherDatabase]

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

WITH (STATE=OFF)

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

DROP (SELECT, INSERT, UPDATE, DELETE ON Schema::[HumanResources] BY [public])

ADD (SELECT, INSERT, UPDATE, DELETE ON Database::[AdventureWorksLT] BY [public])

WITH (STATE=ON)

GO

Audit Results

I just read a post over at Microsoft Developer Network (MSDN) forums about using audit to
track changes to data. That is not what auditing does. Auditing is used to tell you what ac-
tions have occurred and not what data has changed in the underlying tables. To see this in-
formation, you can use SSMS and view the audit logs, you can view the Windows Application
or Security Event logs (both are also viewable from SSMS), or, if you stored the audit in a fi le
location, you can query the audit log fi les directly.

To view using SSMS, navigate to the <Server_Instance>/Security/Audits node, right-click on
the audit whose log you want to view, and choose View Audit Logs. This will open the Log
File Viewer dialog box, as shown in Figure 1-15. From here, you can browse all the server au-
dits as well as the Windows Application and Security Event logs.

Using T-SQL, you can use the system table–valued function fn_get_audit_fi le to query the
audit data. Not only can this function query individual fi les, but it can also query all fi les in
a specifi c directory. For example, the audit example earlier in this section used the fi le loca-
tion C:\Audit\Security. If other audits had used this same directory, then all audits would be
returned via this query.

SELECT *

FROM sys.fn_get_audit_file

USE [SomeOtherDatabase]

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

WITH (STATE=OFF)

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpec_DataAccess]

DROP (SELECT, INSERT, UPDATE, DELETE ON Schema::[HumanResources] BY [public])

ADD (SELECT, INSERT, UPDATE, DELETE ON Database::[AdventureWorksLT] BY [public])

WITH (STATE=ON)

GO

SELECT *

FROM sys.fn_get_audit_file
(‘C:\Audit\Security*’, DEFAULT, DEFAULT);(‘C:\Audit\Security*’, DEFAULT, DEFAULT);

6/30/2008 2:07:29 PM

26

C01625587.indd 26
Introducing SQL Server 2008

FIGURE 1-15 Log File Viewer dialog box

But if you only wanted audits with the GUID {AB562F41-F4AD-AF4C-28A0-FEB77B546D89},
then you could run the following query to get those results.

SELECT *

FROM sys.fn_get_audit_file

(‘C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89*’, DEFAULT,

DEFAULT);

The second and third arguments for this function are a starting fi le and a starting offset
within the fi le.

SELECT *

FROM sys.fn_get_audit_file

(‘C:\Audit\Security*’,

‘C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89_0_

128484368541270000.sqlaudit’,

1024);

SELECT *

FROM sys.fn_get_audit_file

(‘C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89*’, DEFAULT,

DEFAULT);

SELECT *

FROM sys.fn_get_audit_file

(‘C:\Audit\Security*’,

‘C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89_0_

128484368541270000.sqlaudit’,

1024);
The fn_get_audit_fi le function returns a table that contains information about the event,
including the date and time of the event, the objects and principals involved, the statement
that was executed, miscellaneous additional data (if any), and information about the audit

6/30/2008 2:07:29 PM

C01625587.indd 27
Chapter 1 Security and Administration 27

fi le and offset within that fi le for the recorded event. SQL Server Books Online contains a de-
tailed description of the return columns. Because of formatting, I will show one more query
that returns results as XML, which is more easily displayed in this book format.

SELECT

 [event_time] AS [EventTime]

 , [action_id] AS [ActionId]

 , [succeeded] AS [Succeeded]

 , [session_server_principal_name] AS [ServerPrincipalName]

 , [database_principal_name] AS [DatabasePrincipalName]

 , [server_instance_name] AS [ServerInstanceName]

 , [database_name] AS [DatabaseName]

 , [schema_name] AS [SchemaName]

 , [object_name] AS [ObjectName]

 , [statement] AS [Statement]

 , LEFT([file_name], 20) + ‘...’ AS [AuditFileName]

 , [audit_file_offset] AS [AuditFileOffset]

FROM sys.fn_get_audit_file (‘C:\Audit\Security*’,DEFAULT, DEFAULT)AS [AuditData]

WHERE action_id = ‘SL’

 AND [audit_file_offset] <= 2048

FOR XML PATH(‘AuditData’)

Executing this query results in the following (based on my current audit defi nitions):

<AuditData>

 <EventTime>2008-02-26T17:18:09.7768064</EventTime>

 <ActionId>SL </ActionId>

 <Succeeded>1</Succeeded>

 <ServerPrincipalName>WIN2K3-BASE-VPC\Administrator</ServerPrincipalName>

 <DatabasePrincipalName>dbo</DatabasePrincipalName>

 <ServerInstanceName>WIN2K3-BASE-VPC</ServerInstanceName>

 <DatabaseName>AdventureWorksLT</DatabaseName>

 <SchemaName>SalesLT</SchemaName>

 <ObjectName>Product</ObjectName>

 <Statement>SELECT * FROM SalesLT.Product</Statement>

 <AuditFileName>

 C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89...

 </AuditFileName>

 <AuditFileOffset>1024</AuditFileOffset>

</AuditData>

<AuditData>

 <EventTime>2008-02-26T17:19:04.1549984</EventTime>

 <ActionId>SL </ActionId>

SELECT

 [event_time] AS [EventTime]

 , [action_id] AS [ActionId]

 , [succeeded] AS [Succeeded]

 , [session_server_principal_name] AS [ServerPrincipalName]

 , [database_principal_name] AS [DatabasePrincipalName]

 , [server_instance_name] AS [ServerInstanceName]

 , [database_name] AS [DatabaseName]

 , [schema_name] AS [SchemaName]

 , [object_name] AS [ObjectName]

 , [statement] AS [Statement]

 , LEFT([file_name], 20) + ‘...’ AS [AuditFileName]

 , [audit_file_offset] AS [AuditFileOffset]

FROM sys.fn_get_audit_file (‘C:\Audit\Security*’,DEFAULT, DEFAULT)AS [AuditData]

WHERE action_id = ‘SL’

 AND [audit_file_offset] <= 2048

FOR XML PATH(‘AuditData’)

<AuditData>

 <EventTime>2008-02-26T17:18:09.7768064</EventTime>

 <ActionId>SL </ActionId>

 <Succeeded>1</Succeeded>

 <ServerPrincipalName>WIN2K3-BASE-VPC\Administrator</ServerPrincipalName>

 <DatabasePrincipalName>dbo</DatabasePrincipalName>

 <ServerInstanceName>WIN2K3-BASE-VPC</ServerInstanceName>

 <DatabaseName>AdventureWorksLT</DatabaseName>

 <SchemaName>SalesLT</SchemaName>

 <ObjectName>Product</ObjectName>

 <Statement>SELECT * FROM SalesLT.Product</Statement>

 <AuditFileName>

 C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89...

 </AuditFileName>

 <AuditFileOffset>1024</AuditFileOffset>

</AuditData>

<AuditData>

 <EventTime>2008-02-26T17:19:04.1549984</EventTime>

 <ActionId>SL </ActionId>
 <Succeeded>1</Succeeded>

 <ServerPrincipalName>WIN2K3-BASE-VPC\Administrator</ServerPrincipalName>

 <DatabasePrincipalName>dbo</DatabasePrincipalName>

 <ServerInstanceName>WIN2K3-BASE-VPC</ServerInstanceName>

 <Succeeded>1</Succeeded>

 <ServerPrincipalName>WIN2K3-BASE-VPC\Administrator</ServerPrincipalName>

 <DatabasePrincipalName>dbo</DatabasePrincipalName>

 <ServerInstanceName>WIN2K3-BASE-VPC</ServerInstanceName>

6/30/2008 2:07:29 PM

C0162558
28 Introducing SQL Server 2008

 <DatabaseName>AdventureWorksLT</DatabaseName>

 <SchemaName>SalesLT</SchemaName>

 <ObjectName>Product</ObjectName>

 <Statement>UPDATE [SalesLT].[Product] set [Color] = @1 WHERE [ProductID]=@2</

Statement>

 <AuditFileName>

 C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89...

 </AuditFileName>

 <AuditFileOffset>2048</AuditFileOffset>

</AuditData>

Note It wouldn’t take much to use SQL Server Integration Services in conjunction with the new
auditing feature set to create and populate an audit data warehouse. Because the fn_get_audit_
fi le function can specify a point in time for showing data, some SQL Server Integration Services
(SSIS) package could get the last known fi le and offset and use that as a seed to get any new
audit data.

Bonus Query

While working with audits, I ended up writing this query that will return all audit specifi cation
actions and groups, in their hierarchical order from the server level down to the object level.

;WITH AudAct AS

(

 SELECT

 CAST(class_desc COLLATE SQL_Latin1_General_CP1_CI_AS

 + ‘.’ + [name] + ‘/’ as varchar(8000))

 COLLATE SQL_Latin1_General_CP1_CI_AS as [path],

 1 as [level],

 *

 FROM sys.dm_audit_actions

 WHERE configuration_level = ‘Group’

 AND name = containing_group_name

 AND covering_parent_action_name is null

 OR (containing_group_name is null)

 UNION ALL

 SELECT CAST(AA1.[path] +

 ISNULL(AA2.covering_action_name + ‘.’, ‘’) +

 AA2.class_desc COLLATE SQL_Latin1_General_CP1_CI_AS + ‘.’ +

 <DatabaseName>AdventureWorksLT</DatabaseName>

 <SchemaName>SalesLT</SchemaName>

 <ObjectName>Product</ObjectName>

 <Statement>UPDATE [SalesLT].[Product] set [Color] = @1 WHERE [ProductID]=@2</

Statement>

 <AuditFileName>

 C:\Audit\Security\SecurityAudit_AB562F41-F4AD-AF4C-28A0-FEB77B546D89...

 </AuditFileName>

 <AuditFileOffset>2048</AuditFileOffset>

</AuditData>

;WITH AudAct AS

(

 SELECT

 CAST(class_desc COLLATE SQL_Latin1_General_CP1_CI_AS

 + ‘.’ + [name] + ‘/’ as varchar(8000))

 COLLATE SQL_Latin1_General_CP1_CI_AS as [path],

 1 as [level],

 *

 FROM sys.dm_audit_actions

 WHERE configuration_level = ‘Group’

 AND name = containing_group_name

 AND covering_parent_action_name is null

 OR (containing_group_name is null)

 UNION ALL

 SELECT CAST(AA1.[path] +

 ISNULL(AA2.covering_action_name + ‘.’, ‘’) +

 AA2.class_desc COLLATE SQL_Latin1_General_CP1_CI_AS + ‘.’ +
 AA2.[name] + ‘/’

 as varchar(8000)) COLLATE SQL_Latin1_General_CP1_CI_AS as [path],

 AA1.[level] + 1,

 AA2.*

 FROM AudAct AS AA1

 INNER JOIN sys.dm_audit_actions AS AA2

 AA2.[name] + ‘/’

 as varchar(8000)) COLLATE SQL_Latin1_General_CP1_CI_AS as [path],

 AA1.[level] + 1,

AA2.*

 FROM AudAct AS AA1

 INNER JOIN sys.dm_audit_actions AS AA2

7.indd 28 6/30/2008 2:07:29 PM

C01625587.indd 2
Chapter 1 Security and Administration 29

 ON

 (AA2.parent_class_desc = AA1.class_desc

 AND

 (AA2.covering_parent_action_name = aa1.name

 OR

 (AA2.covering_parent_action_name is null

 AND AA2.covering_action_name = aa1.name)

)

)

 OR

 (AA2.covering_parent_action_name is null

 AND AA2.covering_action_name IS null

 AND AA2.parent_class_desc is null

 AND AA2.containing_group_name = AA1.name

 AND AA2.configuration_level IS NULL

)

)

SELECT * FROM AudAct

ORDER By [path]

Transparent Data Encryption

Prior to SQL Server 2005, most folks would either encrypt the data before sending it to SQL
Server or would use extended stored procedures to do the encryption as needed. The advent
of SQL Server 2005 introduced native encryption capabilities that were previously only avail-
able in external code.

What Is Transparent Data Encryption?

Unlike the encryption libraries and capabilities that were introduced in SQL Server 2005,
which targeted encrypting columns and encryption on a user or role basis, transparent data
encryption (TDE) is focused on encrypting your data without you having to do any additional
programming work and with very little administrative setup. As a matter of fact, with very
little effort, you could implement TDE and not require any programmatic changes.

TDE can encrypt all data in the database, such that the physical database data and transac-
tion log fi les are encrypted. It does this by encrypting the data as it is written to disk and
then decrypting it as it is read from disk.

 ON

 (AA2.parent_class_desc = AA1.class_desc

AND

 (AA2.covering_parent_action_name = aa1.name

 OR

 (AA2.covering_parent_action_name is null

 AND AA2.covering_action_name = aa1.name)

)

)

 OR

 (AA2.covering_parent_action_name is null

 AND AA2.covering_action_name IS null

 AND AA2.parent_class_desc is null

 AND AA2.containing_group_name = AA1.name

 AND AA2.configuration_level IS NULL

)

)

SELECT * FROM AudAct

ORDER By [path]
What TDE Is Not

TDE cannot encrypt or decrypt individual pieces of data.

It cannot be used to restrict access to data.

It cannot be used to secure data from individual users or roles.

9 6/30/2008 2:07:30 PM

30

C01625587.indd 30
Introducing SQL Server 2008

It is not usable as a row-level security implementation.

It cannot prevent application users from accessing secure data.

It is not aware of application security, Active Directory security, or other security
mechanisms.

You may be asking yourself why I am making such a big deal about what TDE is not, and you
would be right to do so. But people have already inquired about its usefulness for such situ-
ations as I just mentioned, and I want to be clear that it is meant to encrypt the physical stor-
age of the data and nothing more.

Why Use TDE

Imagine you are a developer working remotely on a project with a client, and, for one reason
or another, you cannot connect to the development database over a virtual private network
(VPN) either due to technical difficulties or because the company does not allow vendors
VPN access because of company security policies. The development database is large enough
(tens of gigabytes or more) that e-mail, File Transfer Protocol (FTP) (secure, of course), Web
Distributed Authoring and Versioning (WebDav), and so on are not feasible solutions for get-
ting a local copy of the data. And more likely, the company also doesn’t allow such access
from external sources, again because of security policies. This company runs a tight ship, with
multiple firewalls and layers of security to keep the bad people out. So how are you going to
get the data so you can work?

So this company has you, the developer, sign a myriad of non-disclosure agreements (NDAs)
and other legal documents to ensure the data that would be offsite is secure. Company
officials require you to have a firewall, strong passwords, antivirus software, and spyware
protection. They take measure after measure to ensure you are a safe person to work with,
even doing a background check. And then, after they finally know they can trust you, they
put a database backup or possibly a copy of a detached database on a portable hard drive
and then they call some express mail service to come and pick up this hard drive and bring
it to you.

Up until the moment the company called for the package pickup, it was doing everything in
its power to keep the data secure: limiting VPN access only to employees, not allowing FTP
or WebDav access, doing background checks, and so on. And then the entire security process
broke down and was made completely and utterly vulnerable. Sure, I’ve never known any-
one personally who had this data not arrive or used for ill purposes, but I’ve read reports of

people who have lost data and been left exposed.

It doesn’t even have to be such a complex situation. It could be something as simple as the
offsite backup storage getting robbed.

6/30/2008 2:07:30 PM

C01625587.indd 3
Chapter 1 Security and Administration 31

When to Use TDE

For many scenarios, TDE is going to be an efficient and easy-to-implement encryption solu-
tion. It gives you instant protection of your data (including backups), especially data that will
be sent or stored offsite.

Unless you only need to encrypt very little data and that encryption can be done in the
middle tier, you will most likely see a benefit from using TDE. If you are storing a lot of highly
sensitive information, including personal data, credit card information, Social Security num-
bers, private transactions, and the like, then you most definitely want to use TDE to secure
your data.

Tip There are other factors besides how much of your data needs to be secured that would go
into making the decision to use TDE or to simply encrypt individual data columns. Other factors
that will also affect your decision include whether your physical data or backups are secure, how
much of your data actually fits in cache, and how frequently data is modified.

How Does TDE Help?

If the data on the hard drive is encrypted (backup or detached database) and it requires the
use of a certificate to make use of the physical data on the portable hard drive that the com-
pany mailed to you and, very importantly, the certificate and its credentials were not sent
along with the hard drive, then the data on the hard drive is secure, even if it falls into the
wrong hands. The same holds true for the offsite backup storage.

In addition to the encrypted data, you also need a certificate file, a private key file, and the
credentials for that private key, all of which could be sent independently of each other or
stored independently of the backups, thus keeping the security level as high as possible,
which was the original intent for the data.

Before I dig into the implementation, I want to discuss a little more about the mechanism
involved in transparently encrypting data at the database level.

How Does TDE Work?

Other encryption methodologies encrypt data prior to it being inserted or updated in the

table. The encryption could happen in the client application, the middle-tier code, or in the
database server itself using the new encryption abilities that were introduced in SQL Server
2005. The key point here is that the data is encrypted before it even gets put into cache
(and hence before it is written to disk) and stays encrypted in cache and on disk. Decryption
conversely occurs when the data is retrieved from cache or in the middle tier, or in the client
application.

1 6/30/2008 2:07:30 PM

32

C01625587.indd 32
Introducing SQL Server 2008

TDE is different because it isn’t encrypting some of the data prior to being written to cache
(and therefore disk); it is encrypting all data, an 8K page at a time, as it is written to disk, and
it is decrypting the data as it is read from disk. (See Figure 1-16.) This encryption is occurring
at a low level and, although it occurs for all data pages, it only occurs as data is written to
or read from disk. So in a more static database, with a low transaction count and high query
count that is held mostly in cache, you will see little if no impact on performance. On a very
high transactional database that is much, much bigger than could be held in cache (in other
words, high disk input/output, or I/O), you are more likely to see an impact on performance.

Client
Application

· Data is not
encrypted

Database
Engine

· Data is not
encrypted

SQL Data
Cache

· Data is not
encrypted

TDE

· Encrypts and
decrypts 8K
page of data
at a time

Physical
Disk

· Data is
encrypted

FIGURE 1-16 Transparent Data Encryption in the flow of data

Performance Considerations

You didn’t think you could get such an awesome feature without some caveats? Alas, there
are some things that you must take into consideration before encrypting your database.
Performance and security are always at odds with one another, and TDE is no exception to
this rule. If you want to secure your data, you need to do extra processing to encrypt it. You
may decide only to encrypt certain individual columns of data as opposed to using TDE. As
I stated earlier in the chapter, the methodology you use depends on your specific situation.
Knowing all the facts ahead of time (such as exactly what data needs to be secure, how ac-
tive the database is, and how big the database is) will make planning easier and allow you to
make informed decisions about using TDE. I do not want to give the impression that TDE is

slow. On the contrary, TDE will usually be faster than other encryption methodologies avail-
able within SQL Server, even when only a very little data would normally be encrypted. This
speed is a result of a number of factors, including the fact that TDE encrypts data only as it
travels back and forth from disk to cache (so data is not constantly being encrypted and de-

6/30/2008 2:07:30 PM

C01625587.indd 33
Chapter 1 Security and Administration 33

crypted but rather only as it needs to be) and that data in cache is unencrypted, which means
fully effi cient query optimizations and use of indexes.

Tempdb and Transparent Data Encryption

If any database on your SQL Server instance uses TDE, then tempdb also automatically gets
encrypted on that instance. That means that if on a SQL Server instance you have 10 data-
bases, 9 of which are not encrypted and 1 of which is encrypted, then you will be using an
encrypted tempdb for all 10 databases. This could have a great impact on those other 9 da-
tabases if they happen to make much use of tempdb.

If any of those 9 unencrypted databases do use tempdb a lot and the 1 encrypted database
does not use tempdb much, then you should consider using a technology other than TDE to
encrypt that 1 database or consider separating the encrypted and non-encrypted databases
in different SQL Server instances.

Certifi cate and Key Management

I also need to inform you about the other caveat: certifi cate and key management. Sure, you
now have a great way to keep your data secure in case someone steals a backup or acquires
a copy of a detached database, but what about you, when you realize you need to restore
the database to another server? Do you have the appropriate keys or certifi cates to restore
and use the database?

Let’s examine an example that will encrypt the database AdventureWorks2 (a copy of
AdventureWorks with which I can, let’s say, “experiment”). This example will fi rst create the
master key and a certifi cate in the master database; it will continue to create the database
encryption key (a special key in a database used for TDE) and then turn on TDE for the
AdventureWorks2 database.

USE master;

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘P@ssw0rd!!’;

GO

CREATE CERTIFICATE MyServerCert WITH SUBJECT = ‘My Server Certificate’

GO

USE master;

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘P@ssw0rd!!’;

GO

CREATE CERTIFICATE MyServerCert WITH SUBJECT = ‘My Server Certificate’

GO
USE AdventureWorks2

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_128

USE AdventureWorks2

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_128

6/30/2008 2:07:30 PM

34

C01625587.indd 34
Introducing SQL Server 2008

ENCRYPTION BY SERVER CERTIFICATE MyServerCert

GO

ALTER DATABASE AdventureWorks2

SET ENCRYPTION ON

GO

You should immediately run the following query:

;WITH es (encryption_state, encryption_state_desc)

AS(SELECT *

 FROM

 (VALUES

 (0, ‘No database encryption key present, no encryption’),

 (1, ‘Unencrypted’),

 (2, ‘Encryption in progress’),

 (3, ‘Encrypted’),

 (4, ‘Key change in progress’),

 (5, ‘Decryption in progress’))

 EncryptState (encryption_state, encryption_state_desc)

)

SELECT db_name(dek.database_id) as database_name

 ,es.encryption_state_desc

 ,dek.percent_complete

 ,dek.key_algorithm

 ,dek.key_length

FROM sys.dm_database_encryption_keys AS dek

 INNER JOIN es ON es.encryption_state = dek.encryption_state

GO

If you waited too long to run the query, the encryption may complete, and the result would
look like this, instead:

database_name encryption_state_desc

Tempdb Encrypted

AdventureWorks2 Encrypted

But if you ran the query quickly enough, you will see results similar to the following (the per-
cent_complete value for AdventureWorks2 will vary).

ENCRYPTION BY SERVER CERTIFICATE MyServerCert

GO

ALTER DATABASE AdventureWorks2

SET ENCRYPTION ON

GO

;WITH es (encryption_state, encryption_state_desc)

AS(SELECT *

 FROM

 (VALUES

 (0, ‘No database encryption key present, no encryption’),

 (1, ‘Unencrypted’),

 (2, ‘Encryption in progress’),

 (3, ‘Encrypted’),

 (4, ‘Key change in progress’),

 (5, ‘Decryption in progress’))

 EncryptState (encryption_state, encryption_state_desc)

)

SELECT db_name(dek.database_id) as database_name

 ,es.encryption_state_desc

 ,dek.percent_complete

 ,dek.key_algorithm

 ,dek.key_length

FROM sys.dm_database_encryption_keys AS dek

 INNER JOIN es ON es.encryption_state = dek.encryption_state

GO

database_name encryption_state_desc
database_name encryption_state_desc percent_complete key_algorithm key_length

Tempdb Encrypted 0 AES 256

AdventureWorks2 Encryption in progress 14.04779 AES 128

database_name encryption_state_desc percent_complete key_algorithm key_length

6/30/2008 2:07:31 PM

C01625587.indd 35
Chapter 1 Security and Administration 35

You will also notice two interesting things about these results:

Tempdb is also in an encrypted state. Prior to encrypting AdventureWorks2, no user
databases were encrypted on this server instance, so tempdb was not encrypted. This
query would have returned no rows. However, as mentioned earlier in this chapter, once
you turn on TDE for any database in a server instance, tempdb also gets encrypted.

Tempdb is using the same key algorithm but a longer key length (the maximum
key length for AES, actually). In reality, even if you had used Triple Data Encryption
Standard (DES) for your database encryption key algorithm, tempdb would still (and
always) be encrypted using AES 256 because it is the most secure of the encryption
algorithms.

Now, what would happen if we made a backup of AdventureWorks2, dropped the database,
re-created the database, and then fi nally restored it from the backup? Well, because we are
on the same server instance, it would work fi ne, but if we were on a different server instance,
or if we “accidentally” dropped the server certifi cate, MyServerCert, that was used to create
the database encryption key, we would have problems. Let’s go through the latter scenario
on this server instance.

Examine this script that makes the backup or the database and the server certifi cate (we’ll
need that later to fi x the problem we will introduce), then drops the certifi cate and attempts
to restore the database:

BACKUP DATABASE [AdventureWorks2]

TO DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 NOFORMAT, INIT, NAME = N’AdventureWorks2-Full Database Backup’,

 SKIP, NOREWIND, NOUNLOAD, STATS = 10

GO

USE MASTER

GO

BACKUP CERTIFICATE MyServerCert TO FILE = ‘c:\MyServerCert.cer’

WITH PRIVATE KEY

 (FILE = ‘c:\MyServerCert.key’, ENCRYPTION BY PASSWORD = ‘p455w0rd’);

GO

DROP CERTIFICATE MyServerCert

GO

BACKUP DATABASE [AdventureWorks2]

TO DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 NOFORMAT, INIT, NAME = N’AdventureWorks2-Full Database Backup’,

 SKIP, NOREWIND, NOUNLOAD, STATS = 10

GO

USE MASTER

GO

BACKUP CERTIFICATE MyServerCert TO FILE = ‘c:\MyServerCert.cer’

WITH PRIVATE KEY

 (FILE = ‘c:\MyServerCert.key’, ENCRYPTION BY PASSWORD = ‘p455w0rd’);

GO

DROP CERTIFICATE MyServerCert

GO
RESTORE DATABASE [AdventureWorks2]

FROM DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 FILE = 1, NOUNLOAD, REPLACE, STATS = 10

GO

RESTORE DATABASE [AdventureWorks2]

FROM DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 FILE = 1, NOUNLOAD, REPLACE, STATS = 10

GO

6/30/2008 2:07:31 PM

C01625587
36 Introducing SQL Server 2008

This will fail on the last step, restoring the database, because without the server certifi cate
that was used to create the database encryption key, the key is not usable. Therefore, no
restore is possible. If this were a different server instance (some thief’s server, perhaps), the
restore would not be possible, and your data would be safe.

However, what if it was your data that you needed to recover? You would need the server
certifi cate, which you can re-create from a backup (made in the previous script), and then
you could successfully restore the database, as shown here:

CREATE CERTIFICATE MyServerCert

FROM FILE = ‘c:\MyServerCert.cer’

WITH PRIVATE KEY

 (FILE = ‘c:\MyServerCert.key’, DECRYPTION BY PASSWORD = ‘p455w0rd’);

GO

RESTORE DATABASE [AdventureWorks2]

FROM DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 FILE = 1, NOUNLOAD, REPLACE, STATS = 10

GO

Extensible Key Management

In SQL Server 2005, new certifi cate and key functionality was added that allowed you to defi ne
and use certifi cates, asymmetric keys, and symmetric keys in the database. This functionality
has been extended in SQL Server 2008 with the advent of Extensible Key Management (EKM).

EKM allows a third-party vendor to register a library that allows access to its Hardware
Security Module (HSM), a software- or hardware-based device for storing keys, part of an
enterprise key management solution.

For example, a third-party vendor may have a centralized smart card system that can allow
access to a single smart card device from any server in the domain. The vendor provides
a library that can be installed on a server, which gives it the ability to access that central-
ized smart card device. SQL Server 2008 can register this library as a provider and subse-
quently access it. So now all your SQL Server 2008 instances can use a centralized set of keys.
Encrypted data shared across instances can be more easily used, because you don’t need to
go through the more cumbersome process of duplicating keys amongst instances. Instead,

CREATE CERTIFICATE MyServerCert

FROM FILE = ‘c:\MyServerCert.cer’

WITH PRIVATE KEY

 (FILE = ‘c:\MyServerCert.key’, DECRYPTION BY PASSWORD = ‘p455w0rd’);

GO

RESTORE DATABASE [AdventureWorks2]

FROM DISK =

 N’C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Backup\AdventureWorks2.bak’

WITH

 FILE = 1, NOUNLOAD, REPLACE, STATS = 10

GO
each can use a key encrypted by a key from the EKM provider.

Key management is a complex topic that is well beyond the scope of this book. However, we
can walk through a simple example that shows how an EKM could be used to encrypt data in
your database.

.indd 36 6/30/2008 2:07:31 PM

C01625587.indd 37
Chapter 1 Security and Administration 37

EKM in Practice

To use the EKM, you must fi rst register it in SQL Server as a cryptographic provider. For ex-
ample, if we had an EKM provider library named KeyMgrPro.dll, it could be registered in SQL
as follows:

CREATE CRYPTOGRAPHIC PROVIDER cpKeyManagerPro

 FROM FILE = ‘C:\Program Files\Key Manager Pro\KeyMgrPro.dll’

Now that we have registered the EKM in SQL Server, the next step is to use it to secure your
data. The fi rst step is to create a symmetric or asymmetric key using a key on the EKM cryp-
tographic provider:

CREATE SYMMETRIC KEY CreditCardSymKey

FROM PROVIDER cpKeyManagerPro

WITH

 PROVIDER_KEY_NAME=’CreditCardKey’,

 CREATION_DISPOSITION=OPEN_EXISTING;

This example uses an existing key named CreditCardKey on the cpKeyManagerPro crypto-
graphic provider. At this point, you have a symmetric key, and you can use it just like you
have used a symmetric key since SQL Server 2005.

Now suppose you add a new column to the Sales.CreditCard table that will hold the encrypt-
ed credit card number, as shown here:

ALTER TABLE Sales.CreditCard

 ADD EncryptedCreditCardNumber varbinary(128);

You can then populate the encrypted values from the existing credit card numbers.

UPDATE Sales.CreditCard

SET EncryptedCreditCardNumber =

 EncryptByKey(

 Key_GUID(‘CreditCardSymKey’),

 CreditCardNumber,

 1,

CREATE CRYPTOGRAPHIC PROVIDER cpKeyManagerPro

 FROM FILE = ‘C:\Program Files\Key Manager Pro\KeyMgrPro.dll’

CREATE SYMMETRIC KEY CreditCardSymKey

FROM PROVIDER cpKeyManagerPro

WITH

 PROVIDER_KEY_NAME=’CreditCardKey’,

 CREATION_DISPOSITION=OPEN_EXISTING;

ALTER TABLE Sales.CreditCard

 ADD EncryptedCreditCardNumber varbinary(128);

UPDATE Sales.CreditCard

SET EncryptedCreditCardNumber =

 EncryptByKey(

 Key_GUID(‘CreditCardSymKey’),

 CreditCardNumber,

 1,
 HashBytes(‘SHA1’, CAST(CreditCardID AS VARBINARY)));

At this point, you no longer need the unencrypted credit card number, and you can use the
symmetric key to decrypt a credit card as needed.

 HashBytes(‘SHA1’, CAST(CreditCardID AS VARBINARY)));

6/30/2008 2:07:31 PM

C01625587
38 Introducing SQL Server 2008

SELECT CreditCardID,

 CAST(DecryptByKey(

 EncryptedCreditCardNumber,

 1, HashBytes(‘SHA1’, CONVERT(CreditCardID AS VARBINARY)))

 AS NVARCHAR) AS CreditCardNumber

FROM Sales.CreditCard = @CreditCardID;

You would incorporate this into a function and use it to decrypt the credit card number for
a specifi c card, or perhaps you would use this in a stored procedure. The beauty is that you
don’t need to open and close the symmetric key, as that is handled by the EKM cryptographic
provider.

Summary

On the manageability front, Policy-Based Management lessens the work previously required
to keep servers, databases, and an assortment of objects in conformity with company policies.
There are other features that have not yet been discussed, such as the advanced edit capabil-
ity for conditions, which allows you to create custom expressions using the available facet
properties and a variety of built-in functions (including the ability to dynamically execute
T-SQL). I hope that this gives you enough to become familiar with the workings of the policy
management and to continue increasing your knowledge.

SQL Server 2008 Books Online has additional examples and step-by-step instructions on how
to create several different policies. I recommend reading through these and trying them out
as they can give types of examples other than those covered in this chapter.

On the security front, TDE is a phenomenal technology that allows you to quite literally
transparently encrypt your data as it is written to disk and decrypt it as it is read from disk.
Because all data, in data fi les and transaction log fi les, are encrypted, you can feel safer
about what happens to your data after it leaves for offsite storage, while it’s in transport to a
client or consultant, or if someone unscrupulous gets his or her hands on the data fi les.

It also works in a very effi cient manner, only performing encryption as data goes from cache
to disk and vice versa. Although it seems like overkill, it really only does the work as needed,
allowing for an effi cient way to secure your data.

And fi nally, on the security and manageability front, you have auditing and EKM: Auditing to
let you see what has been happening on your servers and for EKM to allow you to use keys

SELECT CreditCardID,

 CAST(DecryptByKey(

 EncryptedCreditCardNumber,

 1, HashBytes(‘SHA1’, CONVERT(CreditCardID AS VARBINARY)))

 AS NVARCHAR) AS CreditCardNumber

FROM Sales.CreditCard = @CreditCardID;
from your enterprise key management solution instead of individually managing keys on
each SQL Server instance.

You now have a more secure and easier to manage database server.

.indd 38 6/30/2008 2:07:31 PM

C02625587.i
Chapter 2

Performance

SQL Server 2008 has some new and some improved features to better performance and
to more easily monitor performance. In this chapter, we’ll be discussing the new Resource
Governor, which allows you to govern the amount of resources an application can use. You
will see how data and backup compression can help reduce the storage requirements of your
data and thus reduce the amount of disk input/output (I/O) to help better performance. You
will also explore the new data collection capabilities of SQL Server 2008, which allows you to
collect trace, query, and Performance Monitor data to help you evaluate the performance as-
pects of your database server. And you will look at new query plan freezing features that give
you more flexibility and options for working with plan guides to help better performance.

Resource Governor

We’ve all seen it before. One poorly written application slows your SQL Server to a crawl,
consuming far more resources than it should and, in the process, hurting the performance of
other more mission-critical applications. And what could you do except admonish those who
wrote the bad application in hopes it would be corrected and apologize to those using the
mission-critical applications?

Well no more! SQL Server 2008 can now give those mission-critical applications the resources
they deserve and that less critical application fewer resources so that it doesn’t hurt the over-
all performance of the database server instance. Resource Governor, a new addition to SQL
Server 2008, can allow you to group different resources and allocate more or less resources
depending on the requirements for the applications.

Resource Pools

A resource pool represents a possible subset of the server’s resources. By default, there are
two resource pools. The first is used internally for resources required by SQL Server itself and
is aptly named “internal.” The second, named “default,” is the resource pool used by incom-
ing sessions. Because, initially, there are no other resource pools, all incoming requests would
39

be directed to the default resource pool. This behavior of all incoming requests sharing a
single resource pool is the same behavior you currently see in SQL Server 2005 and earlier,
where all incoming requests are grouped together and treated as equals.

ndd 39 6/30/2008 2:09:07 PM

40

C02625587.indd 40
Introducing SQL Server 2008

Resource Pool Settings

Besides the name, a resource pool has four settings that can be specifi ed:

Setting Name Description

Minimum CPU % MIN_CPU_PERCENT The guaranteed average amount of CPU
time for all requests being serviced by the
resource pool when there is contention for
CPU time. It can be a value between 0 and
100, and, for all resource pools, the sum of
this value must be less than or equal to 100.

Maximum CPU % MAX_CPU_PERCENT The maximum average amount of CPU
time for all requests being serviced by the
resource pool when there is contention for
CPU time. This value must be greater than
the Minimum CPU % and less than or equal
to 100.

Minimum Memory % MIN_MEMORY_PERCENT The minimum amount of memory that is
dedicated to this resource pool (not shared
with other resource pools). Valid values are
from 0 to 100. For all resource pools, the
sum of this value must be less than or equal
to 100.

Maximum Memory % MAX_MEMORY_PERCENT The maximum amount of memory that can
be used by this resource pool. This value
must be greater than the Minimum Memory
% and less than or equal to 100.

Both minimum settings have a default value of 0, and both maximum settings have a default
value of 100. All four settings are optionally specifi ed when creating a resource pool. Also
note that, for all pools except the internal pool, if the sum of all the minimum percent (of ei-
ther CPU or memory) is 100, then each pool will use at most its minimum percent value. For
example, if you have 3 resource pools—default, MonitorAppPool, and RealtimeEventsPool—
each with a respective Minimum CPU % of 20, 30, and 50, then the default pool will never
use more than 20 percent (when there is contention for CPU), because MonitorAppPool and
RealtimeEventsPool require 80 percent of the CPU resources.

This realized maximum percentage is known as the Effective Maximum Percent and repre-
sents the maximum amount of resources the pool can have when resources are in conten-
tion. For any given pool (except the internal pool, which is not counted in this calculation),
this effective maximum can be calculated using the following formula (for CPU or memory):

Setting Name Description
Effective Maximum % = 100 – MIN(Max % value, SUM(All Other Min % values))

Another calculated value of note is the Shared Percentage, which is simply the difference
between the Effective Maximum % and the Min %. This value determines how much of the

6/30/2008 2:09:07 PM

C02625587.indd 4
Chapter 2 Performance 41

pool’s resources are sharable when resources are in contention. For example, examine the
following table (copied directly from an Excel workbook that I used to calculate these values).

Pool Name Min CPU % Max CPU % Effective Max CPU % Shared CPU %

Internal 0 100 100 0

Default 20 100 50 30

MonitorAppPool 25 50 50 25

RealtimeEventsPool 25 75 55 30

Although you would think that MonitorAppPool and RealtimeEventsPool should have the
same Effective Maximum CPU %, MonitorAppPool is actually lower (50 versus the 55 value of
RealtimeEventsPool) because MonitorAppPool also has a Maximum CPU % of 50, which limits
its Effective Maximum CPU %.

To sum up things: When resources are in contention, a pool will use between its Minimum
Percent and its Effective Maximum Percent.

Note Resource pool settings are applicable to each CPU available for use by SQL Server. There is
no confi guration to associate a resource pool with a particular CPU.

Workload Groups

Incoming requests are not directly associated to a resource pool. Instead, workload groups
are used to allow for a subdivision of a pool’s resources, as well as a means of associating re-
quests to resources. A resource pool can be associated with multiple workload groups, but a
workload group may be associated with one and only one resource pool.

Workload groups allow you to further separate tasks within a resource pool and are the ba-
sis for the use of the classifi er function (discussed later in this section), which determines to
which workload group an incoming request is associated.

When you associate multiple workload groups with the same resource pool, you can fur-
ther defi ne how each behaves with the resource pool. For example, you can tell a particular
workload group to get preferential treatment within the resource pool by assigning the
IMPORTANCE setting to a value of LOW, MEDIUM (the default), or HIGH. You can also limit
the amount of memory used relative to the other groups in the resource pool by changing
the REQUEST_MAX_MEMORY_GRANT_PERCENT setting (the default is 25).

Pool Name Min CPU % Max CPU % Effective Max CPU % Shared CPU %
Important Setting REQUEST_MAX_MEMORY_GRANT_PERCENT to a value greater than 50 will
result in large queries running one at a time.

1 6/30/2008 2:09:07 PM

C02625587
42 Introducing SQL Server 2008

For information on the other workload group settings, see the topic “CREATE WORKLOAD
GROUP (Transact-SQL)” in SQL Server Books Online.

The Classifi er Function

By default, the Resource Governor doesn’t specify a classifi er function, so if it is enabled in
this state, all requests are directed to the default workload group, which is part of the default
resource pool. And so, user-defi ned resource pools or workload groups will not have any
incoming requests associated with them until you implement and assign a classifi er function
that can associate the requests with the groups.

A classifi er function is simply a scalar schema-bound, user-defi ned function with no parame-
ters in the master database that is used to determine with which workload group the session
should be associated. It is evaluated for each new incoming session (regardless of connection
pooling settings), and its return value is literally the name of the workload group that should
be used for the session. If the function returns null or the name of a non-existent workload
group, the default workload group is used for the session.

Note If you create a resource pool that has a minimum but is never associated with an incoming
request, you can effectively waste memory or CPU because that minimum will reduce the effec-
tive maximum of the other resource pools.

The following example simply checks the login name, and, if it is either MonitorServiceUser
or RealtimeServiceUser, then it returns the appropriate workload group name. If the login
name doesn’t match either of these values, the function will return null (the CASE expression
returns null).

USE [master]

GO

CREATE FUNCTION [dbo].[fnClassifier]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(CASE SUSER_SNAME()

 WHEN ‘MonitorServiceUser’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeServiceUser’ THEN ‘RealtimeGroup’

USE [master]

GO

CREATE FUNCTION [dbo].[fnClassifier]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(CASE SUSER_SNAME()

 WHEN ‘MonitorServiceUser’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeServiceUser’ THEN ‘RealtimeGroup’
 END AS SYSNAME)

END

GO

 END AS SYSNAME)

END

GO

.indd 42 6/30/2008 2:09:08 PM

C02625587.ind
Chapter 2 Performance 43

The next example uses the application name to determine the associated workload group.

CREATE FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END AS SYSNAME)

END

GO

Although the login name may not be easily changed, other values such as workstation id
(HOST_NAME) or the application name (APP_NAME) can be changed in the connection string
used to connect to the server. So if your application needs to change its associated workload
group, you can simply change the application name value in the connection string.

Data Source=YourServer;Initial Catalog=YourDatabase;Persist Security

Info=True;Trusted_Connection=True;Application Name=MonitorApp;

Note Although using the workstation id or the application name is a simple way to change a
request’s associated workload group without requiring any application code changes, it also can
invite potential security issues. For example, a malicious user could use this method to associate
an application to a workload group with more resources (i.e., higher maximums and minimums),
giving the application more resources than originally intended or allowed to have. Therefore, this
method of associating requests to workload groups should only be used if you trust all the ap-
plications that are connecting to your database server instance.

You could also have a table containing a list of application name values (or login names or
other information to group incoming requests) and an associated workload group, and you
could use it as the source for your classifi er function, for example.

CREATE TABLE dbo.AppWorkloadGroups

(

CREATE FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END AS SYSNAME)

END

GO

Data Source=YourServer;Initial Catalog=YourDatabase;Persist Security

Info=True;Trusted_Connection=True;Application Name=MonitorApp;

CREATE TABLE dbo.AppWorkloadGroups

(

 AppName NVARCHAR(128) NOT NULL PRIMARY KEY,

 WorkloadGroup SYSNAME NOT NULL

)

GO

 AppName NVARCHAR(128) NOT NULL PRIMARY KEY,

 WorkloadGroup SYSNAME NOT NULL

)

GO

d 43 6/30/2008 2:09:08 PM

4

C02625587.i
4 Introducing SQL Server 2008

INSERT INTO dbo.AppWorkloadGroups

VALUES

 (N’MonitorApp’, ‘MonitorGroup’)

 , (N’DashboardApp’, ‘MonitorGroup’)

 , (N’RealtimeApp’, ‘RealtimeGroup’)

GO

CREATE FUNCTION [dbo].[fnClassifyWorkloadGroupByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 (SELECT MIN(WorkloadGroup)

 FROM dbo.AppWorkloadGroups

 WHERE AppName = (APP_NAME()))

 AS SYSNAME)

END

GO

ALTER RESOURCE GOVERNOR

WITH (CLASSIFIER_FUNCTION = [dbo].[fnClassifyWorkloadGroupByApp]);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

Now you can more easily manage how applications get associated to workload groups.

Note Dedicated administrator connections (DACs) are not affected by the Resource Governor,
regardless of the classifi cation function, because DACs always run in the internal workload group.
So the DAC can be used to troubleshoot issues with the classifi er function.

Creating Resource Pools and Workload Groups

You can create resource pools and workload groups using either Transact-SQL (T-SQL) or
SQL Server Management Studio. This fi rst example shows how to create two resource pools.
The fi rst resource pool is for monitoring related applications and includes two workload
groups: one for the live monitor application used by IT staff (high importance) and one for a

INSERT INTO dbo.AppWorkloadGroups

VALUES

 (N’MonitorApp’, ‘MonitorGroup’)

 , (N’DashboardApp’, ‘MonitorGroup’)

 , (N’RealtimeApp’, ‘RealtimeGroup’)

GO

CREATE FUNCTION [dbo].[fnClassifyWorkloadGroupByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 (SELECT MIN(WorkloadGroup)

 FROM dbo.AppWorkloadGroups

 WHERE AppName = (APP_NAME()))

 AS SYSNAME)

END

GO

ALTER RESOURCE GOVERNOR

WITH (CLASSIFIER_FUNCTION = [dbo].[fnClassifyWorkloadGroupByApp]);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO
dashboard-style application used by corporate executives (lower importance), which should
give way to the monitor application as needed.

ndd 44 6/30/2008 2:09:08 PM

C02625587.indd 45
Chapter 2 Performance 45

The second resource pool is for the real-time event collection services. It should be given
more resources than the monitoring application resource pool (to ensure proper data col-
lection). It contains a single workload group. This following example is a continuation of the
classifi er function example from the previous code listing.

CREATE RESOURCE POOL [MonitorAppPool]

WITH (MAX_CPU_PERCENT=25)

GO

CREATE WORKLOAD GROUP [MonitorGroup]

WITH (IMPORTANCE=HIGH)

USING [MonitorAppPool]

GO

CREATE WORKLOAD GROUP [DashboardGroup]

WITH (IMPORTANCE=LOW

 , REQUEST_MAX_MEMORY_GRANT_PERCENT=10)

USING [MonitorAppPool]

GO

CREATE RESOURCE POOL [RealtimeAppPool]

WITH (MIN_CPU_PERCENT=25

 , MAX_CPU_PERCENT=75)

GO

CREATE WORKLOAD GROUP [RealtimeGroup]

WITH (IMPORTANCE=HIGH)

USING [RealtimeAppPool]

GO

Using SQL Server Management Studio (SSMS), you can manage the state and associated clas-
sifi er function of the Resource Governor, as well as all resource pools, workload groups, and
their respective settings all in a single dialog box. Figure 2-1 shows the example above done
with SSMS.

CREATE RESOURCE POOL [MonitorAppPool]

WITH (MAX_CPU_PERCENT=25)

GO

CREATE WORKLOAD GROUP [MonitorGroup]

WITH (IMPORTANCE=HIGH)

USING [MonitorAppPool]

GO

CREATE WORKLOAD GROUP [DashboardGroup]

WITH (IMPORTANCE=LOW

 , REQUEST_MAX_MEMORY_GRANT_PERCENT=10)

USING [MonitorAppPool]

GO

CREATE RESOURCE POOL [RealtimeAppPool]

WITH (MIN_CPU_PERCENT=25

 , MAX_CPU_PERCENT=75)

GO

CREATE WORKLOAD GROUP [RealtimeGroup]

WITH (IMPORTANCE=HIGH)

USING [RealtimeAppPool]

GO
6/30/2008 2:09:08 PM

C02625587
46 Introducing SQL Server 2008

FIGURE 2-1 Resource Governor Properties dialog box

Data and Backup Compression

SQL Server Enterprise (and thus Developer) edition now allows you to effortlessly implement
data and backup compression.

Data Compression

Data compression can compress table data, nonclustered indexes, and indexed views. Of
course, because a clustered index contains the table data in its leaf level, clustered indexes
are compressed when a table is compressed. There are no changes required to your code
to access data that is in a compressed state because the compression and decompression is
done behind the scenes.

Row Compression

Row compression uses variable length storage to reduce row storage requirements. Not all

data types can be compressed. For example, an INT of 4 bytes can be reduced such that only
the bytes needed for storage are used. So if an INT column has a value of 12,345, then it will

.indd 46 6/30/2008 2:09:09 PM

C02625587.indd
Chapter 2 Performance 47

use only 2 bytes (because a 2 byte integer can hold values from –32,768 to 32,767). The topic
“Row Compression Implementation” in SQL Server Books Online describes all the data types
and if and how much they can be compressed.

Note When compression is implemented, 0 (numeric) and NULL values do not take up any
space.

Page Compression

Page compression is actually a combination of three different compression types: row, prefix,
and dictionary. First a row compression operation is done, in an attempt to reduce the data
type storage.

Note When using page compression on a nonclustered index, the non-leaf nodes of the index
are compressed using only row compression. The leaf nodes use all of the three compressions
(discussed in this section).

Next, a prefix compression operation is performed. Prefix compression looks for patterns in
the start of the data and repeated prefix values in the page header. For example, review the
pieces of data shown in Figure 2-2.

Column 1 Column 2

Data abcdefg abcefg abcd abcdefg xxyyzzz xxyyz

FIGURE 2-2 Data before compression

Note The prefix and dictionary values are actually stored in a compression information (CI)
structure in an area just after the page header.
When prefix compression is applied, different initial patterns within the same column are
moved to the CI structure, and the data is changed to reference the values in the CI structure
(pointers are represented here by the equal border color), as shown in Figure 2-3.

 47 6/30/2008 2:09:09 PM

48

C02625587.indd
Introducing SQL Server 2008

abcd xxyyz

Data 4efg 3efg [empty] 4efg 5zz [empty]

Column 1 Column 2

CIStructure

FIGURE 2-3 Data after prefix compression

A value of [empty] in the data means that data is an exact match and just a pointer to the
prefix value in the CI structure is stored. The value 4efg replaces the prefix of abcd (four char-
acters) and points to the prefix value in the CI structure. The value 3efg only uses three of the
characters from the prefix in the CI structure.

Now that the prefix compression has been completed, a third compression operation occurs.
Dictionary compression looks for repeated patterns throughout the data and replaces them,
as shown in Figure 2-4.

abcd xxyyz

Data [empty] 3efg [empty] [empty] 5zz [empty]

Column 1 Column 2

CIStructure 4efg

FIGURE 2-4 Data after dictionary compression

For example, the [empty] value in the box on the left of Column 2 represents the value 4efg,
which is stored in the CI structure. In other words, dictionary compression consolidates data
across columns.

Now that you have seen the three compression operations that occur for page compression,
I must tell you that, on new pages, the process is a little different. Each new page only uses

row compression until the page is full and another row is then attempted to be added. At
this point, the engine must evaluate the columns for prefix compression and the page for
dictionary compression. If the compression gains enough space (less the CI overhead) for

 48 6/30/2008 2:09:10 PM

C02625587.indd 49
Chapter 2 Performance 49

another row to be added, the data is page compressed in addition to the existing row com-
pression. If not enough space is gained, no page compression occurs, and only the row com-
pression remains in effect.

Implementing Data Compression

So how do you actually compress the data in a table or a nonclustered index? As usual, you
have two choices: use SSMS or use T-SQL.

SSMS provides a wizard interface to generate or execute a T-SQL script. The first step is
to start the wizard. As shown in Figure 2-5, you navigate to a table in the Object Explorer,
right-click on the table, choose Storage, and then choose Manage Compression to get things
started.

FIGURE 2-5 Manage Compression context menu

You will then see a Welcome screen (that you optionally choose not to display on subsequent
visits to the wizard). The Data Compression Wizard, as shown in Figure 2-6, allows you to set
up the compression individually on each partition. In this example, there is only one partition,

but a table may be spread across several partitions. You can choose to use the same setting
for all of them (by selecting the Use Same Compression Type For All Partitions check box) or
to individually choose page compression, row compression, or no compression. This step in
the wizard also lets you calculate the compressed space size (by clicking the Calculate button
after selecting your compression options).

6/30/2008 2:09:11 PM

50

C02625587.indd 50
Introducing SQL Server 2008

FIGURE 2-6 Selecting the compression type in the Data Compression Wizard

At this point, you are ready to either create a script, execute the script, or schedule the script
to be executed. In Figure 2-7, I am opting to generate the script in a new query window.
FIGURE 2-7 Selecting an output option in the Data Compression Wizard

6/30/2008 2:09:11 PM

C02625587.indd 51
Chapter 2 Performance 51

The next screen is a review screen, and the last is a status of the script generation (and op-
tional execution). When all is said and done, I end up with the following code in a new query
window.

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = ALL

WITH (DATA_COMPRESSION = PAGE)

You can, of course, choose to write the T-SQL instead of using the wizard, but the additional
scheduling options done via the wizard are a nice plus. Also, if you are still unfamiliar with the
new syntax, or if you have a more complex structure, the wizard can make the work much
easier.

Compressing Partitions

Compressing data in partitions is very similar to compressing data in a single partition table.
For reference, this code adds four fi legroups, four fi les, a partition function, and a partition
scheme, and it changes the SalesOrderDetail table to be partitioned (all of the code was gen-
erated via SSMS wizards or property windows).

USE [master]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG1]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG2]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG3]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG4]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File1’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File1.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG1]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File2’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File2.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG2]

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = ALL

WITH (DATA_COMPRESSION = PAGE)

USE [master]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG1]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG2]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG3]

GO

ALTER DATABASE [AdventureWorks] ADD FILEGROUP [FG4]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File1’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File1.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG1]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File2’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File2.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG2]
GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File3’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File3.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File3’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File3.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

6/30/2008 2:09:11 PM

52

C02625587.indd 52
Introducing SQL Server 2008

TO FILEGROUP [FG3]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File4’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File4.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG4]

GO

USE [AdventureWorks]

GO

BEGIN TRANSACTION

CREATE PARTITION FUNCTION [fnSalesOrderDetail_PartitionBySalesOrderID](int)

AS RANGE LEFT FOR VALUES (N’50000’, N’65000’, N’80000’)

CREATE PARTITION SCHEME [psSalesOrderDetail]

AS PARTITION [fnSalesOrderDetail_PartitionBySalesOrderID]

TO ([FG1], [FG2], [FG3], [FG4])

ALTER TABLE [Sales].[SalesOrderDetail]

DROP CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID]

ALTER TABLE [Sales].[SalesOrderDetail]

ADD CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID] PRIMARY KEY

CLUSTERED

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)ON [psSalesOrderDetail]([SalesOrderID])

COMMIT TRANSACTION

Now, let’s say you want to set up data compression on the SalesOrderDetail table with the
following settings:

Partition 1 with no compression

Partition 2 with row compression

Partitions 3 and 4 with page compression

You could run the wizard and set the values shown in Figure 2-8.

TO FILEGROUP [FG3]

GO

ALTER DATABASE [AdventureWorks]

ADD FILE (NAME = N’File4’, FILENAME = N’C:\Program Files\Microsoft SQL Server\

MSSQL10.MSSQLSERVER\MSSQL\DATA\File4.ndf’ , SIZE = 10240KB , FILEGROWTH = 1024KB)

TO FILEGROUP [FG4]

GO

USE [AdventureWorks]

GO

BEGIN TRANSACTION

CREATE PARTITION FUNCTION [fnSalesOrderDetail_PartitionBySalesOrderID](int)

AS RANGE LEFT FOR VALUES (N’50000’, N’65000’, N’80000’)

CREATE PARTITION SCHEME [psSalesOrderDetail]

AS PARTITION [fnSalesOrderDetail_PartitionBySalesOrderID]

TO ([FG1], [FG2], [FG3], [FG4])

ALTER TABLE [Sales].[SalesOrderDetail]

DROP CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID]

ALTER TABLE [Sales].[SalesOrderDetail]

ADD CONSTRAINT [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID] PRIMARY KEY

CLUSTERED

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)ON [psSalesOrderDetail]([SalesOrderID])

COMMIT TRANSACTION
6/30/2008 2:09:11 PM

C02625587.indd 53
Chapter 2 Performance 53

FIGURE 2-8 Selecting compression type for partitioned table in the Data Compression Wizard

Or you can write the following T-SQL code (which was, of course, generated from the wizard).

USE [AdventureWorks]

GO

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 2

WITH(DATA_COMPRESSION = ROW)

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 3

WITH(DATA_COMPRESSION = PAGE)

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 4

WITH(DATA_COMPRESSION = PAGE)

GO

As promised, this process is very similar to a table on a single partition.

Compressing Nonclustered Indexes

USE [AdventureWorks]

GO

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 2

WITH(DATA_COMPRESSION = ROW)

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 3

WITH(DATA_COMPRESSION = PAGE)

USE [AdventureWorks]

ALTER TABLE [Sales].[SalesOrderDetail] REBUILD PARTITION = 4

WITH(DATA_COMPRESSION = PAGE)

GO
As you likely already determined, compressing a nonclustered index is also a very similar pro-
cess. You can, of course, right-click on the index in Object Explorer, choose Storage, and then

6/30/2008 2:09:12 PM

54

C02625587.indd 54
Introducing SQL Server 2008

choose Manage Compression, and use the Data Compression Wizard, or you can simply write
T-SQL code, as shown here.

USE [AdventureWorks]

ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail]

REBUILD PARTITION = ALL

WITH (DATA_COMPRESSION = PAGE)

Backup Compression

Compressing backup data is not so much about saving disk space as it is about reducing
disk I/O. Although backup compression can potentially save a lot of disk I/O, this savings
does come at a price—an increase in CPU usage. Overall, however, backup compression will
usually result in better performance. I will revisit the CPU performance increase later in this
section.

Confi guring and Using Backup Compression

Backup compression is off by default. You have two options that allow you to use or not use
backup compression: change the default server confi guration value for backup compression
or override this default confi guration for individual backups.

You can change the default confi guration by using sp_confi gure, as shown here.

EXEC sp_configure ‘backup compression default’, 1

RECONFIGURE WITH OVERRIDE;

Setting this confi guration setting to a value of 1 means all backups will be compressed un-
less specifi cally told not to be compressed in the BACKUP statement, and a value of 0 means
backups will not be compressed, unless specifi cally told to be compressed. For example, if
the default setting was 0, but you wanted the AdventureWorks database backup to be com-
pressed, you simply add the COMPRESSION option, as shown here.

BACKUP DATABASE AdventureWorks

USE [AdventureWorks]

ALTER INDEX [IX_SalesOrderDetail_ProductID] ON [Sales].[SalesOrderDetail]

REBUILD PARTITION = ALL

WITH (DATA_COMPRESSION = PAGE)

EXEC sp_configure ‘backup compression default’, 1

RECONFIGURE WITH OVERRIDE;

BACKUP DATABASE AdventureWorks
TO DISK=’C:\AdvWorksData.bak’ -- C Drive for demo purposes only

WITH FORMAT,

 COMPRESSION,

 NAME=’AdventureWorks Full Compressed Backup’

GO

TO DISK=’C:\AdvWorksData.bak’ -- C Drive for demo purposes only

WITH FORMAT,

 COMPRESSION,

 NAME=’AdventureWorks Full Compressed Backup’

GO

6/30/2008 2:09:12 PM

C02625587.indd 55
Chapter 2 Performance 55

If you do not want a database backup to be compressed, you explicitly state it using the
NO_COMPRESSION option.

You can check the compression ratio of your backup by checking the ratio of backup_size
and compressed_backup_size in the backupset history table (in msdb database).

SELECT name,

 backup_size,

 compressed_backup_size,

 backup_size/compressed_backup_size as ratio

FROM msdb..backupset

WHERE name = ‘AdventureWorks Full Compressed Backup’

GO

This query gives the following results (individual compression size may vary).

name backup_size compressed_backup_size Ratio

AdventureWorks
Full Compressed
Backup

183583744 42139433 4.356578409586099556

The ratio is about 4.36 to 1, meaning that the compressed backup is using just under 23 per-
cent of the space that the equivalent uncompressed backup would have used.

Using Resource Governor to Minimize CPU Impact

As I mentioned earlier in this section, backup compression requires more CPU processing (in
exchange for less disk I/O). This increase in CPU usage can be mitigated by using Resource
Governor to limit the maximum amount of CPU used by backup compression.

-- Create login

USE master;

GO

CREATE LOGIN [Domain\BackupUser] FROM WINDOWS

GRANT VIEW SERVER STATE TO [Domain\BackupUser]

GO

-- Add user to database

USE AdventureWorks;

SELECT name,

 backup_size,

 compressed_backup_size,

 backup_size/compressed_backup_size as ratio

FROM msdb..backupset

WHERE name = ‘AdventureWorks Full Compressed Backup’

GO

name backup_size compressed_backup_size Ratio

-- Create login

USE master;

GO

CREATE LOGIN [Domain\BackupUser] FROM WINDOWS

GRANT VIEW SERVER STATE TO [Domain\BackupUser]

GO

-- Add user to database

USE AdventureWorks;
GO

CREATE USER [Domain\BackupUser] FOR LOGIN [Domain\BackupUser]

EXEC sp_addrolemember ‘db_backupoperator’, ‘Domain\BackupUser’

GO

GO

CREATE USER [Domain\BackupUser] FOR LOGIN [Domain\BackupUser]

EXEC sp_addrolemember ‘db_backupoperator’, ‘Domain\BackupUser’

GO

6/30/2008 2:09:12 PM

56

C02625587.indd 56
Introducing SQL Server 2008

-- Create resource pool and workload group

USE master;

GO

CREATE RESOURCE POOL [BackupPool]

WITH (MAX_CPU_PERCENT=20)

GO

CREATE WORKLOAD GROUP [BackupGroup]

USING [BackupPool]

GO

-- Create classifier function

CREATE FUNCTION [dbo].[fnClassifier]()

RETURNS SYSNAME

WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE SUSER_SNAME()

 WHEN ‘Domain\BackupUser’ THEN ‘BackupGroup’

 END

 AS SYSNAME)

END

GO

-- Associate classifier with Resource Governor

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION=dbo.fnClassifier);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

If you already have a classifi er function, you probably can’t simply replace it with the example
above, and instead you will likely want to alter it to perform the check for the login that will
perform the backups, as shown in the following code listing.

-- Original classifier function

CREATE FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’

-- Create resource pool and workload group

USE master;

GO

CREATE RESOURCE POOL [BackupPool]

WITH (MAX_CPU_PERCENT=20)

GO

CREATE WORKLOAD GROUP [BackupGroup]

USING [BackupPool]

GO

-- Create classifier function

CREATE FUNCTION [dbo].[fnClassifier]()

RETURNS SYSNAME

WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE SUSER_SNAME()

 WHEN ‘Domain\BackupUser’ THEN ‘BackupGroup’

END

 AS SYSNAME)

END

GO

-- Associate classifier with Resource Governor

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION=dbo.fnClassifier);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

-- Original classifier function

CREATE FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’
 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END AS SYSNAME)

END

GO

 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END AS SYSNAME)

END

GO

6/30/2008 2:09:12 PM

C02625587.indd 57
Chapter 2 Performance 57

-- Altered classifier function to accommodate backup process login

ALTER FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE SUSER_SNAME()

 WHEN ‘Domain\BackupUser’ THEN ‘BackupGroup’

 ELSE CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END

 END AS SYSNAME)

END

GO

All that’s left to do is to use the [Domain\BackupUser] account for the backup process, and it
will be limited to 20 percent of the CPU when other processes require CPU as well.

Other Notes Regarding Compression

Previous versions of SQL Server (2005 and earlier) cannot read compressed backups.

Compression cannot be used on a database that is using Transparent Data Encryption.

Media Sets cannot contain both compressed and uncompressed backups.

Compression doesn’t change the maximum row size of 8,060 bytes; it instead allows
more rows to be stored on a page.

Nonclustered indexes do not automatically get compressed when the table is com-
pressed. They must be compressed independently.

When compressed data is bulk exported, it is decompressed. When data is bulk import-
ed into a table with data compression, the data is compressed (and requires extra CPU
to do the job).

-- Altered classifier function to accommodate backup process login

ALTER FUNCTION [dbo].[fnClassifyByApp]()

RETURNS SYSNAME WITH SCHEMABINDING

BEGIN

 RETURN

 CAST(

 CASE SUSER_SNAME()

 WHEN ‘Domain\BackupUser’ THEN ‘BackupGroup’

 ELSE CASE APP_NAME()

 WHEN ‘MonitorApp’ THEN ‘MonitorGroup’

 WHEN ‘DashboardApp’ THEN ‘MonitorGroup’

 WHEN ‘RealtimeApp’ THEN ‘RealtimeGroup’

 END

 END AS SYSNAME)

END

GO
Having compressed data does not automatically cause backups to be compressed.
Backup compression is a separate operation.

There are many other tidbits and details about compression that I could list, but they are
listed in the topic “Creating Compressed Tables and Indexes” in SQL Server Books Online.

6/30/2008 2:09:13 PM

C02625587
58 Introducing SQL Server 2008

Performance Data Collection

Performance Monitor, SQL Server Profiler, Dynamic Management Views (DMVs) and
Functions, and T-SQL in general: What do they all have in common? The answer is that they
all can be used to find potential performance problems for SQL Server. On numerous occa-
sions, I have used these and other tools to try and pinpoint where performance problems
were occurring. In the past, I have combined data from Performance Monitor log files, SQL
Profiler traces, and custom queries to help determine the source of performance problems,
timeouts, blocking, and so on.

Sure, other tools exist both from Microsoft and third-party vendors that use data from these
and other sources that allow you to analyze this data to help uncover performance problems,
but what if this ability was built into SQL Server?

That’s where Performance Data Collection comes in. Instead of using a set of disparate tools
to collect and analyze performance data, you can now create Data Collection Sets that will
gather and store Windows Performance Monitor data, SQL Profiler traces, and results from
T-SQL queries (such as queries against DMVs). This data resides in a data warehouse that can
be local or remote, such that multiple servers can consolidate their performance data in a
single location.

My job as a consultant just got easier.

Data Collection Setup

There are several steps you need to take to use the data collector. These steps include

1. Create logins to use with Data Collector.

2. Configure the Management Data Warehouse—this is where the collected data is
stored.

3. Create proxies for SQL Server Agent, if needed.

The “Data Collection” topic in SQL Server Books Online has details on how to go about set-
ting up the Data Collector, which I will not repeat here. Once things are set up, however, the

Data Collection node in Object Explorer will become enabled and have several child nodes
including Disk Usage, Query Statistics, and Server Activity, as shown in Figure 2-9.

.indd 58 6/30/2008 2:09:13 PM

C02625587.indd 59
Chapter 2 Performance 59

FIGURE 2-9 Data Collection in Object Explorer

Collector Types

There are four types of collectors that you can use. The three user-configurable ones will al-
low you to collect data from T-SQL queries, Profiler events, and Performance Monitor coun-
ters. I’ll start with a brief description of each of the collector types and then follow up with a
concrete example of implementing these collector types.

T-SQL Collector Type This collector type allows you to use T-SQL to determine what
data is collected. The code can be a simple SELECT statement or a call to a stored pro-
cedure, or it can be a more complicated block of code with variables, control-of-flow,
and so on.

SQL Trace Collector Type This collector type is actually doing server-side tracing, as
you would do using the fn_trace_gettable() system function and the SQL Server Profiler
system stored procedures (sp_trace_create, sp_trace_setevent, and so on). The trace

data is collected in trace files and uploaded to the management data warehouse based
on the collection set schedule, or if a manual collect and upload is requested.

You can use the export feature SQL Profiler to take an existing trace definition and save
it as a SQL Trace collection set.

6/30/2008 2:09:13 PM

60

C02625587.indd 60
Introducing SQL Server 2008

Performance Counter Collector Type This collector type is used to collect data from
Performance Monitor counters. Unlike the sys.dm_os_performance_counters DMV, it
can collect and upload not only SQL Server–related counters but also system and cus-
tom counters.

Query Activity Collector Type The Query Activity Collector Type is a custom col-
lection type used by the predefi ned system Query Statistics data collection set. It col-
lects query statistics and activity from various dynamic management views, including
dm_exec_requests, dm_exec_sessions, and dm_exec_query_stats, amongst others. This
collector type is not confi gurable and should not be altered other than changing the
upload frequency. Therefore, use the Query Statistics data collection set and don’t de-
fi ne your collector item using the query activity collector type.

Creating Collection Sets and Items

I am going to create a data collection set with four collection items. To more effectively
explain the code, it will be broken into shorter blocks, each accomplishing a different task.
The fi rst task will be to start a transaction, use a try block, to declare a couple of variables
that you will need, and then to create the data collection set named My Performance DC, as
shown here.

USE msdb;

BEGIN TRANSACTION

BEGIN TRY

 DECLARE @collection_set_id INT

 EXEC [dbo].[sp_syscollector_create_collection_set]

 @name = N’My Performance DC’,

 @collection_mode = 1, -- Non-cached

 @description = N’Collects performance data and row counts for user tables.’,

 @days_until_expiration = 7,

 @schedule_name = N’CollectorSchedule_Every_6h’,

 @collection_set_id = @collection_set_id OUTPUT

You should take note of the @collection_set_id variable: It will hold the integer ID for the

USE msdb;

BEGIN TRANSACTION

BEGIN TRY

 DECLARE @collection_set_id INT

 EXEC [dbo].[sp_syscollector_create_collection_set]

 @name = N’My Performance DC’,

 @collection_mode = 1, -- Non-cached

 @description = N’Collects performance data and row counts for user tables.’,

 @days_until_expiration = 7,

 @schedule_name = N’CollectorSchedule_Every_6h’,

 @collection_set_id = @collection_set_id OUTPUT
collection set that will be used by the stored procedures that add collection items to that col-
lection set. Now that you have that ID, you can create the collection items. But fi rst, you need
the globally unique identifi er (GUID) for the collector type.

6/30/2008 2:09:13 PM

C02625587.indd
Chapter 2 Performance 61

Note Collection sets and collection items can only be created via T-SQL. SQL Profi ler can, how-
ever, export a trace defi nition to a collection set defi nition T-SQL script. You can also script the
system collection sets and use the generated T-SQL to learn how to write T-SQL to create your
own collection sets and collection items.

This next part of the code will add two collection items using the T-SQL collector type. The
fi rst statement retrieves this GUID, which, like the collection set ID, is used by the subsequent
procedures that add the collection items.

 DECLARE @collector_type_uid UNIQUEIDENTIFIER

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Generic T-SQL Query Collector Type’)

 DECLARE @CollItemID int

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’Row Counts’,

 @parameters = N’

 <TSQLQueryCollector>

 <Query>

 <Value>

 SELECT

 S.name AS SchemaName,

 O.name AS ObjectName,

 SUM(PS.row_count) AS TotalRows

 FROM sys.dm_db_partition_stats AS PS

 INNER JOIN sys.objects AS O

 ON O.object_id = PS.object_id

 INNER JOIN sys.schemas AS S

 ON S.schema_id = O.schema_id

 WHERE O.is_ms_shipped = 0

 AND PS.index_id <= 1

 GROUP BY S.name, O.Name

 </Value>

 <OutputTable>row_countage</OutputTable>

 </Query>

 <Databases UseSystemDatabases = “false” UseUserDatabases = “true” />

 </TSQLQueryCollector>’,

 DECLARE @collector_type_uid UNIQUEIDENTIFIER

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Generic T-SQL Query Collector Type’)

 DECLARE @CollItemID int

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’Row Counts’,

 @parameters = N’

 <TSQLQueryCollector>

 <Query>

 <Value>

 SELECT

 S.name AS SchemaName,

 O.name AS ObjectName,

 SUM(PS.row_count) AS TotalRows

 FROM sys.dm_db_partition_stats AS PS

 INNER JOIN sys.objects AS O

 ON O.object_id = PS.object_id

 INNER JOIN sys.schemas AS S

 ON S.schema_id = O.schema_id

 WHERE O.is_ms_shipped = 0

 AND PS.index_id <= 1

 GROUP BY S.name, O.Name

 </Value>

 <OutputTable>row_countage</OutputTable>

 </Query>

 <Databases UseSystemDatabases = “false” UseUserDatabases = “true” />

 </TSQLQueryCollector>’,
 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

 61 6/30/2008 2:09:13 PM

62

C02625587.indd 6
Introducing SQL Server 2008

This collection item, named Row Counts, will collect row count data for all user tables (based
primarily on data from the dm_db_partition_stats DMV).

The @parameters parameter is XML that tells the Data Collector what data to collect, and
its schema is determined by the collector type. You can see the XML schemas for the vari-
ous collector types by querying the syscollector_collector_types table in the msdb database.
For the T-SQL collector type, the <Value> element in @parameters is the T-SQL code to run.
Although these examples only contain a SELECT statement, the code can contain more com-
plex T-SQL, such as the use of variables, control-of-fl ow (IF, WHILE, etc.), and so on. The out-
put table is the table name that should be used in the management data warehouse.

The next collection item, named SQL Trace Events, is a SQL trace collector type, and although
the @parameters value is again XML, this time it contains the trace events, grouped by event
type (or event category) that are to be collected by the Data Collector. Because this collector
type is actually creating a server-side trace, you should design SQL trace collector types such
that they fi lter for very specifi c information so that you don’t fl ood the management data
warehouse with an excess of unrelated or irrelevant information.

 SET @collector_type_uid

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Generic SQL Trace Collector Type’)

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’SQL Trace Events’,

 @parameters=N’

 <SqlTraceCollector>

 <Events>

 <EventType id=”11” name=”Stored Procedures”>

 <Event id=”10” name=”RPC:Completed”

 columnslist=”1,3,11,35,12,28,13” />

 <Event id=”45” name=”SP:StmtCompleted”

 columnslist=”1,3,11,35,12,28,13” />

 </EventType>

 <EventType id=”13” name=”TSQL”>

 <Event id=”12” name=”SQL:BatchCompleted”

 columnslist=”1,3,11,35,12,28,13” />

 </EventType>

 </Events>

 <Filters>

 <Filter columnid=”35” columnname=”DatabaseName”

 logical_operator=”AND” comparison_operator=”LIKE”

 value=”MyDatabase”/>

 SET @collector_type_uid

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Generic SQL Trace Collector Type’)

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’SQL Trace Events’,

 @parameters=N’

 <SqlTraceCollector>

 <Events>

 <EventType id=”11” name=”Stored Procedures”>

 <Event id=”10” name=”RPC:Completed”

 columnslist=”1,3,11,35,12,28,13” />

 <Event id=”45” name=”SP:StmtCompleted”

 columnslist=”1,3,11,35,12,28,13” />

 </EventType>

 <EventType id=”13” name=”TSQL”>

 <Event id=”12” name=”SQL:BatchCompleted”

 columnslist=”1,3,11,35,12,28,13” />

 </EventType>

 </Events>

 <Filters>

 <Filter columnid=”35” columnname=”DatabaseName”

 logical_operator=”AND” comparison_operator=”LIKE”

 value=”MyDatabase”/>
 </Filters>

 </SqlTraceCollector>’,

 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

 </Filters>

 </SqlTraceCollector>’,

 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

2 6/30/2008 2:09:14 PM

C02625587.indd 63
Chapter 2 Performance 63

The last collection item, PerfMon Counters, is a performance counter collector type. The
@parameters value is yet again XML, but this time, it contains the list of performance coun-
ters that the Data Collector is to collect.

 SET @collector_type_uid

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Performance Counters Collector Type’)

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’PerfMon Counters’,

 @parameters=N’

 <PerformanceCountersCollector>

 <PerformanceCounters Objects=”Memory” Counters=”Pages/sec” />

 <PerformanceCounters Objects=”Network Interface”

 Counters=”Bytes Total/sec” Instances=”*” />

 <PerformanceCounters Objects=”Process”

 Counters=”% Processor Time” Instances=”*” />

 <PerformanceCounters Objects=”$(INSTANCE):Plan Cache”

 Counters=”Cache Hit Ratio” Instances=”*” />

 <PerformanceCounters Objects=”$(INSTANCE):Workload Group Stats”

 Counters=”CPU usage %” Instances=”*” />

 </PerformanceCountersCollector>’,

 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

Finally, close the TRY block, and either COMMIT the transaction or, if an exception occurs, re-
raise the exception and ROLLBACK the transaction.

COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 ROLLBACK TRANSACTION;

 DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE()

 , @ErrorSeverity INT = ERROR_SEVERITY()

 , @ErrorState INT = ERROR_STATE()

 , @ErrorNumber INT = ERROR_NUMBER()

 , @ErrorLine INT = ERROR_LINE()

 , @ErrorProcedure NVARCHAR(200) = ISNULL(ERROR_PROCEDURE(), ‘-’)

 SET @collector_type_uid

 = (SELECT TOP 1 collector_type_uid

 FROM [dbo].[syscollector_collector_types]

 WHERE name = N’Performance Counters Collector Type’)

 EXEC [dbo].[sp_syscollector_create_collection_item]

 @name = N’PerfMon Counters’,

 @parameters=N’

 <PerformanceCountersCollector>

 <PerformanceCounters Objects=”Memory” Counters=”Pages/sec” />

 <PerformanceCounters Objects=”Network Interface”

 Counters=”Bytes Total/sec” Instances=”*” />

 <PerformanceCounters Objects=”Process”

 Counters=”% Processor Time” Instances=”*” />

 <PerformanceCounters Objects=”$(INSTANCE):Plan Cache”

 Counters=”Cache Hit Ratio” Instances=”*” />

 <PerformanceCounters Objects=”$(INSTANCE):Workload Group Stats”

 Counters=”CPU usage %” Instances=”*” />

 </PerformanceCountersCollector>’,

 @collection_item_id = @CollItemID OUTPUT,

 @frequency = 5,

 @collection_set_id = @collection_set_id,

 @collector_type_uid = @collector_type_uid

COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 ROLLBACK TRANSACTION;

 DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE()

 , @ErrorSeverity INT = ERROR_SEVERITY()

 , @ErrorState INT = ERROR_STATE()

 , @ErrorNumber INT = ERROR_NUMBER()

 , @ErrorLine INT = ERROR_LINE()

 , @ErrorProcedure NVARCHAR(200) = ISNULL(ERROR_PROCEDURE(), ‘-’)
 RAISERROR (14684, @ErrorSeverity, 1 , @ErrorNumber, @ErrorSeverity, @ErrorState,

 @ErrorProcedure, @ErrorLine, @ErrorMessage);

END CATCH;

GO

 RAISERROR (14684, @ErrorSeverity, 1 , @ErrorNumber, @ErrorSeverity, @ErrorState,

 @ErrorProcedure, @ErrorLine, @ErrorMessage);

END CATCH;

GO

6/30/2008 2:09:14 PM

6

C02625587.i
4 Introducing SQL Server 2008

Collecting Data

A quick refresh of the Data Collection node in Object Explorer reveals the new collection
set. You could double-click the collection set (or right-click and choose Properties) to see its
properties, as shown in Figure 2-10.

FIGURE 2-10 Data Collection Set Properties dialog box

The collection set does not collect anything, however, until you start the data collection set.
This feat is easily accomplished by right-clicking the collection set and choosing Start Data
Collection Set, as shown in Figure 2-11.

Note You can also use T-SQL to start a data collection set via the system stored procedure
sp_syscollector_start_collection_set.

Once it is started, it will collect and upload data every six hours (as defined in the example

data collection set created earlier in this section). You can always manually perform a collec-
tion by selecting Collect And Upload Now from the context menu for the data collection set.

ndd 64 6/30/2008 2:09:14 PM

C02625587.indd 65
Chapter 2 Performance 65

FIGURE 2-11 Starting a data collection set

Viewing Collection Data

Once data collection sets begin to collect and upload data, you can begin to examine the
collected data. There are a series of built-in tables, views, and other objects that are created
when the management data warehouse is created that are used for the system data collec-
tion sets. For example, to view data from the last snapshot for the Disk Usage system collec-
tion set, you could query the snapshots.disk_usage table, as shown here.

SELECT

 database_name AS DatabaseName

 , dbsize AS DatabaseSize

 , logsize AS LogSize

 , ftsize AS FullTextSize

FROM snapshots.disk_usage

WHERE snapshot_id = (SELECT MAX(snapshot_id) FROM snapshots.disk_usage)

ORDER BY database_name

SELECT

 database_name AS DatabaseName

 , dbsize AS DatabaseSize

 , logsize AS LogSize

 , ftsize AS FullTextSize

FROM snapshots.disk_usage

WHERE snapshot_id = (SELECT MAX(snapshot_id) FROM snapshots.disk_usage)

ORDER BY database_name
6/30/2008 2:09:15 PM

66

C02625587.indd 66
Introducing SQL Server 2008

The query would give you results similar to these:

DatabaseName DatabaseSize LogSize FullTextSize

AdventureWorks 29240 2304 0

AdventureWorksDW 9016 256 0

AdventureWorksLT 2688 33024 0

master 512 128 0

model 280 64 0

msdb 2184 192 0

ReportServer 408 800 0

ReportServerTempDB 280 104 0

tempdb 3936 96 0

There are other predefi ned tables and views for viewing performance data (snapshots.per-
formance_counters view), trace data (snapshots.trace_data table), and results from T-SQL
queries (snapshots.os_waits_stats table) from the three system data collection sets. You can
fi nd these and others in the management data warehouse database being used by the Data
Collector.

The three built-in system data collection sets also each come with a report, which you can
view by right-clicking on the system data collection set and choosing Reports, then choosing
Historical, and then choosing the specifi c report you want, such as Disk Usage Summary, as
shown in Figure 2-12.

DatabaseName DatabaseSize LogSize FullTextSize
FIGURE 2-12 Data collection reports context menu

6/30/2008 2:09:15 PM

C02625587.indd 67
Chapter 2 Performance 67

Selecting Disk Usage Summary results in the report being displayed in SSMS, as shown in
Figure 2-13.

FIGURE 2-13 Disk Usage Collection Set built-in report

In addition to the Disk Usage Summary Report, there are two other built-in reports: Query
Statistics History Report and Server Activity History Report. I suggest exploring these reports
further as each one not only provides valuable information but has drill-down reports with
additional details.

Note Starting with Release Candidate 0, the report context menu items will be changing.
Instead of right-clicking the individual system collection set nodes in Object Explorer, you will
right-click the Data Collection node. From there, you can choose Reports and then choose
Management Data Warehouse, and under that menu item you will find all of the built-in reports.

User Collection Set Data
Performance counter and SQL Trace data from user-created collection sets and items are
stored in the same place as their system-defined counterparts. To distinguish the data from
the user-created data collection sets and the system data collection sets, you can join to
the core.snapshots view and add criteria to limit the GUID of your data collection set. For

6/30/2008 2:09:16 PM

68

C02625587.indd 68
Introducing SQL Server 2008

example, to view performance counters for the data collection set created earlier in this sec-
tion, you could execute the following statement.

SELECT *

FROM snapshots.performance_counters AS pc

 INNER JOIN core.snapshots AS s ON s.snapshot_id = pc.snapshot_id

WHERE s.collection_set_uid =

 CAST(‘59ACA7B9-8615-41AF-A634-99ED15B03E56’ AS UNIQUEIDENTIFIER)

Mind you, the GUID will be different each time you create a collection set (although you can
specify a GUID when creating a collection set instead of having a random one assigned).

Now what about the collected T-SQL data? Well, there is a schema in the management data
warehouse database named custom_snapshots. When the collection for the user created col-
lection item using a T-SQL collector type is collected and uploaded for the fi rst time, it adds
the necessary table to the custom_snapshots schema in the management data warehouse
database using the name defi ned in the collection item (i.e. row_countage and dm_exec_
query_stats from the earlier examples).

For example, this following query is using the custom_snapshots.row_countage table speci-
fi ed in the Row Counts collection item defi ned earlier in this section, and it will report back
any changes in row counts from the last two snapshots and any new tables with at least one
row that has been created between the last two snapshots.

;WITH SnapShotLast AS

(

 SELECT MAX(snapshot_id) AS snapshot_id

 FROM custom_snapshots.row_countage

)

, SnapShotPrevious AS

(

 SELECT MAX(snapshot_id) AS snapshot_id

 FROM custom_snapshots.row_countage

 WHERE snapshot_id < (SELECT TOP 1 snapshot_id FROM SnapShotLast)

)

, r1 as

(

 SELECT *

 FROM custom_snapshots.row_countage

 WHERE snapshot_id = (SELECT TOP 1 snapshot_id FROM SnapShotLast)

)

SELECT *

FROM snapshots.performance_counters AS pc

 INNER JOIN core.snapshots AS s ON s.snapshot_id = pc.snapshot_id

WHERE s.collection_set_uid =

 CAST(‘59ACA7B9-8615-41AF-A634-99ED15B03E56’ AS UNIQUEIDENTIFIER)

;WITH SnapShotLast AS

(

 SELECT MAX(snapshot_id) AS snapshot_id

 FROM custom_snapshots.row_countage

)

, SnapShotPrevious AS

(

 SELECT MAX(snapshot_id) AS snapshot_id

 FROM custom_snapshots.row_countage

 WHERE snapshot_id < (SELECT TOP 1 snapshot_id FROM SnapShotLast)

)

, r1 as

(

 SELECT *

 FROM custom_snapshots.row_countage

 WHERE snapshot_id = (SELECT TOP 1 snapshot_id FROM SnapShotLast)

)

, r2 AS

(

 SELECT *

 FROM custom_snapshots.row_countage

, r2 AS

(

 SELECT *

 FROM custom_snapshots.row_countage

6/30/2008 2:09:16 PM

C02625587.indd
Chapter 2 Performance 69

 WHERE snapshot_id = (SELECT TOP 1 snapshot_id FROM SnapShotPrevious)

)

SELECT

 r1.database_name

 , r1.SchemaName

 , r1.ObjectName

 , MAX(ABS(r1.TotalRows - ISNULL(r2.TotalRows, 0))) RowDelta

FROM r1

 LEFT OUTER JOIN r2

 ON r1.database_name = r2.database_name

 AND r1.SchemaName = r2.SchemaName

 AND r1.ObjectName = r2.ObjectName

WHERE r1.TotalRows != ISNULL(r2.TotalRows, 0)

GROUP BY r1.database_name, r1.SchemaName, r1.ObjectName

This query could be created as a view or stored procedure in the management data ware-
house database and be the source for a report.

Query Plan Freezing

SQL Server 2005 introduced a feature known as plan forcing. Plan forcing allows you to spec-
ify a query plan to be used when a query is executed. Of course, you would only use plan
forcing when the optimizer was making obviously bad plan choices, which is infrequent at
best. On that off occasion, however, when you need to give the optimizer a push in the right
direction, you could use plan forcing to do so.

SQL Server 2008 takes this concept further with the advent of plan freezing, which allows you
to easily use plans already in cache as the basis for your plan guides.

Plan Forcing

There are two ways in which you could force a plan to be used. The fi rst method is using the
USE PLAN query hint. This requires an XML plan, which could be obtained from one of sev-
eral methods, including:

SET SHOWPLAN XML

SET STATISTICS XML

 WHERE snapshot_id = (SELECT TOP 1 snapshot_id FROM SnapShotPrevious)

)

SELECT

 r1.database_name

 , r1.SchemaName

 , r1.ObjectName

 , MAX(ABS(r1.TotalRows - ISNULL(r2.TotalRows, 0))) RowDelta

FROM r1

 LEFT OUTER JOIN r2

 ON r1.database_name = r2.database_name

 AND r1.SchemaName = r2.SchemaName

 AND r1.ObjectName = r2.ObjectName

WHERE r1.TotalRows != ISNULL(r2.TotalRows, 0)

GROUP BY r1.database_name, r1.SchemaName, r1.ObjectName
sys.dm_exec_query_plan

SQL Server Profi ler

 69 6/30/2008 2:09:16 PM

70

C02625587.indd 70
Introducing SQL Server 2008

Once you have a plan, you could then use it in the query with the USE PLAN query hint. This
method allows you use a plan on a case-by-case basis and to optionally customize, optimize,
or fi nely tune the plan as needed. Several examples of this can be found in SQL Server Books
Online. Here is an abridged example of such usage:

SELECT *

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

WHERE h.[SalesPersonID] = 279

OPTION (USE PLAN N’<ShowPlanXML xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/

showplan” Version=”1.0” Build=”9.00.3054.00”>

 <BatchSequence>

 <Batch>

 <Statements>

 <StmtSimple StatementText=” SELECT *
 FROM Sales.

SalesOrderHeader h
		INNER JOIN Sales.Customer c ON h.CustomerID =

c.CustomerID
 WHERE h.[SalesPersonID] = 282
” StatementId=”1”

StatementCompId=”1” StatementType=”SELECT” StatementSubTreeCost=”0.741371”

StatementEstRows=”270.066” StatementOptmLevel=”FULL” StatementOptmEarlyAbortReason=”Go

odEnoughPlanFound”>

 <StatementSetOptions QUOTED_IDENTIFIER=”false” ARITHABORT=”true” CONCAT_

NULL_YIELDS_NULL=”false” ANSI_NULLS=”false” ANSI_PADDING=”false” ANSI_WARNINGS=”false”

NUMERIC_ROUNDABORT=”false” />

 <QueryPlan CachedPlanSize=”36” CompileTime=”14” CompileCPU=”14”

CompileMemory=”528”>

<!-- The remainder of this plan was removed for space reasons -->

 </QueryPlan>

 <UDF ProcName=”[AdventureWorks].[dbo].[ufnLeadingZeros]”>

 <Statements>

 <StmtSimple StatementText=”
CREATE FUNCTION [dbo].[ufnLeadingZ

eros](
 @Value int
) 
RETURNS varchar(8) 
WITH

SCHEMABINDING 
AS 
BEGIN

 DECLARE @ReturnValue varchar(8);


 SET @ReturnValue = CONVERT(varchar(8), @Value);

 “ StatementId=”2” StatementCompId=”3” StatementType=”ASSIGN” />

 <StmtSimple StatementText=” SET @ReturnValue = REPLICATE(‘’0’’, 8 -

DATALENGTH(@ReturnValue)) + @ReturnValue;


 “ StatementId=”3” StatementCompId=”4” StatementType=”ASSIGN” />

 <StmtSimple StatementText=” RETURN (@ReturnValue);” StatementId=”4”

StatementCompId=”5” StatementType=”RETURN” />

 </Statements>

 </UDF>

SELECT *

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

WHERE h.[SalesPersonID] = 279

OPTION (USE PLAN N’<ShowPlanXML xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/

showplan” Version=”1.0” Build=”9.00.3054.00”>

 <BatchSequence>

 <Batch>

 <Statements>

 <StmtSimple StatementText=” SELECT *
 FROM Sales.

SalesOrderHeader h
		INNER JOIN Sales.Customer c ON h.CustomerID =

c.CustomerID
 WHERE h.[SalesPersonID] = 282
” StatementId=”1”

StatementCompId=”1” StatementType=”SELECT” StatementSubTreeCost=”0.741371”

StatementEstRows=”270.066” StatementOptmLevel=”FULL” StatementOptmEarlyAbortReason=”Go

odEnoughPlanFound”>

 <StatementSetOptions QUOTED_IDENTIFIER=”false” ARITHABORT=”true” CONCAT_

NULL_YIELDS_NULL=”false” ANSI_NULLS=”false” ANSI_PADDING=”false” ANSI_WARNINGS=”false”

NUMERIC_ROUNDABORT=”false” />

 <QueryPlan CachedPlanSize=”36” CompileTime=”14” CompileCPU=”14”

CompileMemory=”528”>

<!-- The remainder of this plan was removed for space reasons -->

 </QueryPlan>

 <UDF ProcName=”[AdventureWorks].[dbo].[ufnLeadingZeros]”>

 <Statements>

 <StmtSimple StatementText=”
CREATE FUNCTION [dbo].[ufnLeadingZ

eros](
 @Value int
) 
RETURNS varchar(8) 
WITH

SCHEMABINDING 
AS 
BEGIN

 DECLARE @ReturnValue varchar(8);


 SET @ReturnValue = CONVERT(varchar(8), @Value);

 “ StatementId=”2” StatementCompId=”3” StatementType=”ASSIGN” />

 <StmtSimple StatementText=” SET @ReturnValue = REPLICATE(‘’0’’, 8 -

DATALENGTH(@ReturnValue)) + @ReturnValue;


 “ StatementId=”3” StatementCompId=”4” StatementType=”ASSIGN” />

 <StmtSimple StatementText=” RETURN (@ReturnValue);” StatementId=”4”

StatementCompId=”5” StatementType=”RETURN” />

 </Statements>

 </UDF>
 </StmtSimple>

 </Statements>

 </Batch>

 </BatchSequence>

</ShowPlanXML>’)

 </StmtSimple>

 </Statements>

 </Batch>

 </BatchSequence>

</ShowPlanXML>’)

6/30/2008 2:09:16 PM

C02625587.indd 71
Chapter 2 Performance 71

The second method to implement plan forcing is through the use of the sp_create_plan_
guide system stored procedure. Unlike the USE PLAN option, using sp_create_plan_guide is
executed once and then applied to all queries matching the statement text. It will be in effect
for matching queries until the plan guide is removed or becomes invalid (e.g., because of
an index being dropped). Also, using the USE PLAN option requires making changes to the
application code, which may be diffi cult to implement or simply not allowed. Creating plan
guides, however, can be implemented without touching the application code and may be
your only option in some scenarios.

Here is an example:

USE AdventureWorks

GO

CREATE PROCEDURE Sales.SalesBySalesPersonID (@SalesPersonID INT)

AS

BEGIN

 SELECT *

 FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

 WHERE h.[SalesPersonID] = @SalesPersonID

END

-- *Turn on “Include Actual Execution Plan” to see the plans

-- The first null value causes a bad plan for subsequent non-null values.

EXEC Sales.SalesBySalesPersonID NULL

EXEC Sales.SalesBySalesPersonID 282

GO

-- Now let’s optimize for a non-null parameter value

EXEC sp_create_plan_guide

 @name = N’SalesBySalesPersonID_Guide’,

 @stmt = N’SELECT *

 FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

 WHERE h.[SalesPersonID] = @SalesPersonID’,

 @type = N’OBJECT’,

 @module_or_batch = N’Sales.SalesBySalesPersonID’,

 @params = NULL,

 @hints = N’OPTION (OPTIMIZE FOR (@SalesPersonID = 282))’

GO

-- Free the proc cache…

DBCC FREEPROCCACHE

USE AdventureWorks

GO

CREATE PROCEDURE Sales.SalesBySalesPersonID (@SalesPersonID INT)

AS

BEGIN

 SELECT *

 FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

 WHERE h.[SalesPersonID] = @SalesPersonID

END

-- *Turn on “Include Actual Execution Plan” to see the plans

-- The first null value causes a bad plan for subsequent non-null values.

EXEC Sales.SalesBySalesPersonID NULL

EXEC Sales.SalesBySalesPersonID 282

GO

-- Now let’s optimize for a non-null parameter value

EXEC sp_create_plan_guide

 @name = N’SalesBySalesPersonID_Guide’,

 @stmt = N’SELECT *

 FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

 WHERE h.[SalesPersonID] = @SalesPersonID’,

 @type = N’OBJECT’,

 @module_or_batch = N’Sales.SalesBySalesPersonID’,

 @params = NULL,

 @hints = N’OPTION (OPTIMIZE FOR (@SalesPersonID = 282))’

GO

-- Free the proc cache…

DBCC FREEPROCCACHE
GO

-- Now they will use the plan optimized for a non-null value

EXEC Sales.SalesBySalesPersonID NULL

EXEC Sales.SalesBySalesPersonID 282

GO

GO

-- Now they will use the plan optimized for a non-null value

EXEC Sales.SalesBySalesPersonID NULL

EXEC Sales.SalesBySalesPersonID 282

GO

6/30/2008 2:09:16 PM

C02625587
72 Introducing SQL Server 2008

Note In SQL Server 2008, you can now use plan guides with all data manipulation language
(DML) statements, including the new MERGE statement.

Plan Freezing

In SQL Server 2005, you could implement plan forcing using a plan already in cache
(i.e., freeze the plan), but the process was not simple. In SQL Server 2008, you can eas-
ily create the plan guide from cache using a new system stored procedure named
sp_create_plan_guide_from_handle.

USE AdventureWorks;

GO

SELECT c.CustomerID, c.AccountNumber, h.OrderDate, h.SalesOrderID, h.TotalDue

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

WHERE h.[SalesPersonID] = 282

GO

DECLARE @plan_handle varbinary(64);

DECLARE @offset int;

-- Get the plan handle for the query from the plan in cache

SELECT

 @plan_handle = plan_handle,

 @offset = qs.statement_start_offset

FROM sys.dm_exec_query_stats AS qs

 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st

 CROSS APPLY sys.dm_exec_text_query_plan

 (qs.plan_handle, qs.statement_start_offset, qs.statement_end_offset) AS qp

WHERE text LIKE N’SELECT c.CustomerID, c.AccountNumber, h.OrderDate, h.SalesOrderID%’;

-- Create the plan guide from the cached plan (using the handle from above)

EXECUTE sp_create_plan_guide_from_handle

 @name = N’CustomerSalesGuide’,

 @plan_handle = @plan_handle,

 @statement_start_offset = @offset;

GO

USE AdventureWorks;

GO

SELECT c.CustomerID, c.AccountNumber, h.OrderDate, h.SalesOrderID, h.TotalDue

FROM Sales.SalesOrderHeader h

 INNER JOIN Sales.Customer c ON h.CustomerID = c.CustomerID

WHERE h.[SalesPersonID] = 282

GO

DECLARE @plan_handle varbinary(64);

DECLARE @offset int;

-- Get the plan handle for the query from the plan in cache

SELECT

 @plan_handle = plan_handle,

 @offset = qs.statement_start_offset

FROM sys.dm_exec_query_stats AS qs

 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st

 CROSS APPLY sys.dm_exec_text_query_plan

 (qs.plan_handle, qs.statement_start_offset, qs.statement_end_offset) AS qp

WHERE text LIKE N’SELECT c.CustomerID, c.AccountNumber, h.OrderDate, h.SalesOrderID%’;

-- Create the plan guide from the cached plan (using the handle from above)

EXECUTE sp_create_plan_guide_from_handle

 @name = N’CustomerSalesGuide’,

 @plan_handle = @plan_handle,

 @statement_start_offset = @offset;

GO
You can now also validate the plan using the new sys.fn_validate_plan_guide function. So,
if any metadata changes have been made in the database, you can check to see if any plan
guides have become invalid. Continuing the example from above:

.indd 72 6/30/2008 2:09:16 PM

C02625587.indd 73
Chapter 2 Performance 73

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)

GO

SELECT plan_guide_id, msgnum, severity, state, message

FROM sys.plan_guides

CROSS APPLY fn_validate_plan_guide(plan_guide_id);

This query would cause the plan guide created in the previous example to become invalid.
An easy way to ensure this check is done on each change to metadata is to use a data defi ni-
tion language (DDL) trigger, as follows:

USE [AdventureWorks]

GO

CREATE TRIGGER [trddl_PlanValidate] ON DATABASE

FOR DDL_DATABASE_LEVEL_EVENTS AS

BEGIN

 SET NOCOUNT ON;

 IF EXISTS

 (SELECT plan_guide_id, msgnum, severity, state, message

 FROM sys.plan_guides CROSS APPLY sys.fn_validate_plan_guide(plan_guide_id))

 AND EVENTDATA().value(‘(/EVENT_INSTANCE/TSQLCommand)[1]’, ‘nvarchar(max)’)

 NOT LIKE ‘%OVERRIDE_PLAN_GUIDE%’

 BEGIN

 ROLLBACK TRANSACTION;

 RAISERROR(‘The change you are attempting will invalidate a existing plan

guide.

In order to implement this changes, you can:

1. Remove the offending plan guide

2. Disable this database trigger

3. Include OVERRIDE_PLAN_GUIDE in a comment in your code’, 15, 1)

 END

END;

GO

So if you then executed this code again:

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)

GO

SELECT plan_guide_id, msgnum, severity, state, message

FROM sys.plan_guides

CROSS APPLY fn_validate_plan_guide(plan_guide_id);

USE [AdventureWorks]

GO

CREATE TRIGGER [trddl_PlanValidate] ON DATABASE

FOR DDL_DATABASE_LEVEL_EVENTS AS

BEGIN

 SET NOCOUNT ON;

 IF EXISTS

 (SELECT plan_guide_id, msgnum, severity, state, message

 FROM sys.plan_guides CROSS APPLY sys.fn_validate_plan_guide(plan_guide_id))

 AND EVENTDATA().value(‘(/EVENT_INSTANCE/TSQLCommand)[1]’, ‘nvarchar(max)’)

 NOT LIKE ‘%OVERRIDE_PLAN_GUIDE%’

 BEGIN

 ROLLBACK TRANSACTION;

 RAISERROR(‘The change you are attempting will invalidate a existing plan

guide.

In order to implement this changes, you can:

1. Remove the offending plan guide

2. Disable this database trigger

3. Include OVERRIDE_PLAN_GUIDE in a comment in your code’, 15, 1)

 END

END;

GO

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)
GOGO

6/30/2008 2:09:17 PM

7

C02625587.
4 Introducing SQL Server 2008

You’d get this error:

Msg 50000, Level 15, State 1, Procedure trddl_PlanValidate, Line 14

The change you are attempting will invalidate a existing plan guide.

In order to implement this changes, you can:

1. Remove the offending plan guide

2. Disable this database trigger

3. Include OVERRIDE_PLAN_GUIDE in a comment in your code

Msg 3609, Level 16, State 2, Line 1

The transaction ended in the trigger. The batch has been aborted.

But the trigger was designed to allow you to override it by including OVERRIDE_PLAN_GUIDE
in a comment, as shown here:

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)

--OVERRIDE_PLAN_GUIDE

GO

Of course, you could simply code the trigger to warn you about the invalid plan guide but
not prevent the change. The options are limitless, really.

Note In SQL Server 2008, an invalid plan guide does not cause a query to fail. Instead, the plan
is compiled without using the plan guide, which is not preferred for performance reasons.

Another cool trick that people have been asking about: freezing a set from the plan cache
using a cursor. Here is an example:

-- DBA loops over the plans he/she wants to freeze

declare @plan_handle varbinary(64)

declare @offset int

declare @pgname nvarchar(200)

declare cur_qstats cursor

for select qs.plan_handle, qs.statement_start_offset

from sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text(sql_handle) st

where text LIKE N’select * from t1 inner join t2 on t1.a = t2.a where t1.b > ‘’5’’%’

open cur_qstats

Msg 50000, Level 15, State 1, Procedure trddl_PlanValidate, Line 14

The change you are attempting will invalidate a existing plan guide.

In order to implement this changes, you can:

1. Remove the offending plan guide

2. Disable this database trigger

3. Include OVERRIDE_PLAN_GUIDE in a comment in your code

Msg 3609, Level 16, State 2, Line 1

The transaction ended in the trigger. The batch has been aborted.

DROP INDEX [IX_Customer_TerritoryID] ON [Sales].[Customer] WITH (ONLINE = OFF)

--OVERRIDE_PLAN_GUIDE

GO

-- DBA loops over the plans he/she wants to freeze

declare @plan_handle varbinary(64)

declare @offset int

declare @pgname nvarchar(200)

declare cur_qstats cursor

for select qs.plan_handle, qs.statement_start_offset

from sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text(sql_handle) st

where text LIKE N’select * from t1 inner join t2 on t1.a = t2.a where t1.b > ‘’5’’%’

open cur_qstats
fetch next from cur_qstats

into @plan_handle, @offset

while @@FETCH_STATUS = 0

begin

 set @pgname = N’Guide1’ + convert(nvarchar(50), newid())

fetch next from cur_qstats

into @plan_handle, @offset

while @@FETCH_STATUS = 0

begin

 set @pgname = N’Guide1’ + convert(nvarchar(50), newid())

indd 74 6/30/2008 2:09:17 PM

C02625587.indd 75
Chapter 2 Performance 75

 exec sp_create_plan_guide_from_handle

 @name = @pgname,

 @plan_handle = @plan_handle,

 @statement_start_offset = @offset

 fetch next from cur_qstats

 into @plan_handle, @offset

end

close cur_qstats

deallocate cur_qstats

go

Viewing Plan Guides

Now that you have created these plan guides, how do you go about viewing them? You
could always use T-SQL to query the system catalog, such as:

SELECT *

FROM sys.plan_guides

ORDER BY [name]

And now you can also use Object Explorer in SSMS to see a list of plans and their associated
details, as shown in Figure 2-14.

 exec sp_create_plan_guide_from_handle

 @name = @pgname,

 @plan_handle = @plan_handle,

 @statement_start_offset = @offset

 fetch next from cur_qstats

 into @plan_handle, @offset

end

close cur_qstats

deallocate cur_qstats

go

SELECT *

FROM sys.plan_guides

ORDER BY [name]
FIGURE 2-14 Plan guide context menu in Object Explorer

6/30/2008 2:09:17 PM

76

C02625587.indd
Introducing SQL Server 2008

Plan guides are located under the Programmability node of a database in Object Explorer.
You can right-click on the individual plan guides (as shown in Figure 2-14) or on the Plan
Guides node itself. These context menu options allow you to perform a variety of actions,
such as:

Create a new plan guide

Script a plan guide

Enable or disable individual or all plan guides

Delete a plan guide

You can also view the properties on an individual plan guide, as shown in Figure 2-15.

FIGURE 2-15 Plan Guide properties

You can easily view a property value by hovering the mouse cursor over the individual prop-
erty, or you can select and copy the property value and paste it to a new query window.

You can also see plan guide use via SQL Server Profiler. Under the Performance event cat-

egory (shown in Figure 2-16), you will find two new events:

Plan Guide Successful This event occurs when SQL Server successfully produces an
execution plan for a query or batch with a plan guide.

76 6/30/2008 2:09:18 PM

C02625587.indd
Chapter 2 Performance 77

Plan Guide Unsuccessful This event occurs when SQL Server is unable to produce an
execution plan for a query or batch with a plan guide. This event can be caused by an
invalid plan guide.

FIGURE 2-16 Trace Properties showing plan guide events

Summary

A poorly designed and implemented database can hurt performance as the database
scales up in size. But some well-designed databases can still succumb to performance woes.
Fortunately these new performance-related features in SQL Server 2008 can help you:

More easily monitor performance using the data collection feature.

Tune your plan guide usage to increase query performance.

Distribute application workloads via Resource Governor.

Decrease the performance impact of disk I/O by implementing data and backup
compression.

So if you do encounter problems, you can more easily find those problems, and, using these

new features, you can optimize the performance of your database server.

77 6/30/2008 2:09:18 PM

C02625587.indd 78 6/30/2008 2:09:18 PM

C03625587.i
Chapter 3

Type System

Introduction

What happens when a relational database management system (RDBMS) starts to man-
age data that is not so relational? Can an RDBMS go “beyond relational”? SQL Server 2005
showed us that, indeed, a database server can extend beyond the realm of relational data
by including the ability to manage semi-structured Extensible Markup Language (XML) data.
SQL Server 2008 takes this “beyond relational” concept further still by extending the type
system yet again.

SQL Server 2008 has made some significant changes to the data type system. Some of these
changes are extensions of the existing types and fit into the concept of a relational model,
such as the new, higher-precision date and time data types. Some of them go much further.
The XML data type has been enhanced. A new data type for managing hierarchical data,
HIERARCHYID, has been added. New spatial data types, GEOGRAPHY and GEOMETRY, have
been added for managing geospatial and geometric data. And SQL Server 2008 can now
store binary large objects (BLOBs) as files in the file system instead of its data files, and it can
even provide or limit access to these files.

HIERARCHYID

Back in the days of SQL Server 2005, I had been working on a more efficient means of storing
hierarchical data in a SQL Server. I had read the gamut of topics, from the adjacency model
to nested sets to nested intervals with Farey fractions to materialized paths. I choose the last
path (no pun intended) of materialized paths, because I realized it was, in many ways, very
efficient and that I could implement a nifty common language runtime (CLR)-based user-de-
fined type (UDT) that would take care of a majority of the functionality needed.

HIERARCHYID uses the same underlying concept, materialized paths, to allow you to effi-
ciently manage hierarchical data. And believe it or not, it is a CLR-based type. However, un-
79

like a UDT (which is created by users, deployed to databases as needed, and requires the CLR
Enabled configuration to be turned on), HIERARCHYID is a system CLR type, is built into the
SqlTypes library (SqlHierarchyId), and has no dependencies on the CLR Enabled option.

Before I go digging into the coding aspects, I’d like to first give some background informa-
tion about this new data type.

ndd 79 6/30/2008 2:09:37 PM

80

C03625587.indd 80
Introducing SQL Server 2008

Compact Design

Unlike my materialized path solution (and other materialized path solutions I have seen),
HIERARCHYID offers a compact form of the actual path. In many of the other solutions,
the path requires 4 bytes or more per level in the path, which is far less compact than
HIERARCHYID. How much space HIERARCHYID actually requires depends on the total num-
ber of nodes and the average fanout, or number of children per node. For a fanout of 7 or
less, the formula 6*logAn can be used to determine the maximum number of bits required
for any given node in the hierarchy (although most will require less), where A represents the
average number of children per level, and n represents the total number of nodes. The fol-
lowing chart shows a comparison of the maximum possible number of bytes per node re-
quired by the two methodologies:

Approximate

Node Count

Average

Fanout

Approximate

Total Levels

HIERARCHYID

Maximum Byte Size

Materialized Path

Maximum Byte Size

10,000 6 7 4 28

10,000 3 10 7 40

100,000 6 8 5 32

100,000 3 12 8 48

1,000,000 6 9 6 36

1,000,000 3 14 10 56

10,000,000 6 10 7 40

10,000,000 3 16 12 64

Considering that in an evenly distributed hierarchy, a majority of the nodes will be at
the deepest level, this means that a signifi cantly smaller amount of space is needed for
HIERARCHYID. For example, in a hierarchy that has approximately 1,000,000 nodes and an
average fanout of 3 nodes and having about 600,000 nodes at the deepest level, for this
level, HIERARCHYID would require at most only 10 bytes per node, for a maximum total of
6,000,000 bytes, or less than 6 megabytes (MB) for those nodes. The other materialized path
model would require 56 bytes per node at the deepest level for a total of 33,600,000 bytes,
or just more than 32 MB—a difference of more than 26 MB. For all of the data, a materialized
path would require approximately 45 MB of space, and HIERARCHYID would require a maxi-
mum of 8 MB.

Approximate

Node Count

Average

Fanout

Approximate

Total Levels

HIERARCHYID

Maximum Byte Size

Materialized Path

Maximum Byte Size
Creating and Managing a Hierarchy

HIERARCHYID is very fl exible and easy to use. Although it is simple to implement, if used
incorrectly, it will not maintain a valid hierarchy. This section will show you how to properly
implement and maintain a HIERARCHYID column.

6/30/2008 2:09:37 PM

C03625587.indd 81
Chapter 3 Type System 81

The Root Node

The fi rst step to any hierarchy is to establish a root node of the hierarchy, which is done using
the static GetRoot method of the HIERARCHYID data type, as shown here:

CREATE TABLE [dbo].[Folder]

(

 [FolderNode] HIERARCHYID NOT NULL

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL,

 CONSTRAINT [PK_Folder_FolderNode]

 PRIMARY KEY CLUSTERED ([FolderNode] ASC)

);

GO

INSERT INTO [dbo].[Folder]

VALUES (HIERARCHYID::GetRoot(), 1, NULL, ‘A’)

GetRoot returns a zero-length HIERARCHYID node. If the HIERARCHYID column is the only
thing that uniquely identifi es the nodes of the hierarchy, then you can only have one root
node. You can have multiple root nodes if you have a compound key fi eld.

CREATE TABLE [dbo].[Folder]

(

 [Drive] CHAR(1) NOT NULL,

 [FolderNode] HIERARCHYID NOT NULL

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL,

 CONSTRAINT [PK_Folder_DriveFolderNode]

 PRIMARY KEY CLUSTERED ([Drive] ASC, [FolderNode] ASC)

);

GO

INSERT INTO [dbo].[Folder]

VALUES

 (‘C’, HIERARCHYID::GetRoot(), 1, NULL, ‘A’)

 (‘D’, HIERARCHYID::GetRoot(), 2, NULL, ‘A’)

In the preceding example, each unique “drive” can have its own separate hierarchy, each with

CREATE TABLE [dbo].[Folder]

(

 [FolderNode] HIERARCHYID NOT NULL

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL,

 CONSTRAINT [PK_Folder_FolderNode]

 PRIMARY KEY CLUSTERED ([FolderNode] ASC)

);

GO

INSERT INTO [dbo].[Folder]

VALUES (HIERARCHYID::GetRoot(), 1, NULL, ‘A’)

CREATE TABLE [dbo].[Folder]

(

 [Drive] CHAR(1) NOT NULL,

 [FolderNode] HIERARCHYID NOT NULL

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL,

 CONSTRAINT [PK_Folder_DriveFolderNode]

 PRIMARY KEY CLUSTERED ([Drive] ASC, [FolderNode] ASC)

);

GO

INSERT INTO [dbo].[Folder]

VALUES

 (‘C’, HIERARCHYID::GetRoot(), 1, NULL, ‘A’)

 (‘D’, HIERARCHYID::GetRoot(), 2, NULL, ‘A’)
a root node, because the Drive and FolderNode form a composite key for the table.

Adding Child Nodes

Once you have a root, you can then proceed to add children to the hierarchy. There are two
methods for adding a child node: The fi rst is to use the GetDescendant method, and the

6/30/2008 2:09:37 PM

82

C03625587.indd 82
Introducing SQL Server 2008

second is to manually construct a new path. I will address the latter in a later section of this
chapter. In the meantime, let’s delve into the former.

The GetDescendant method allows you to generate a child node that:

Is the fi rst child node.

Comes after an existing node.

Comes before an existing node.

Comes in between two existing nodes.

To achieve this functionality, the GetDescendant method has two nullable parameters that
determine which type of node will be generated. For example, to generate the fi rst child
node, you would do the following:

DECLARE @folderNode HIERARCHYID;

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE FolderID = 2;

DECLARE @newChildFolderNode HIERARCHYID = @folderNode.GetDescendant(NULL, NULL);

SELECT

 @folderNode AS FolderNode,

 @folderNode.ToString() AS FolderNodePath,

 @newChildFolderNode AS ChildFolderNode,

 @newChildFolderNode.ToString() AS ChildFolderNodePath;

This would give the following results:

FolderNode FolderNodePath ChildFolderNode ChildFolderNodePath

0x58 /1/ 0x5AC0 /1/1/

The child path appends “1/” onto the existing parent path. As a matter of fact, whenever you
create the fi rst child node (using NULL for both parameters) under a given node, it will always
append “1/” to the existing parent path. The GetDescendant method is, in fact, deterministic.

The following table shows how all four variations work:

Parameter 1 Parameter 2 Description

DECLARE @folderNode HIERARCHYID;

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE FolderID = 2;

DECLARE @newChildFolderNode HIERARCHYID = @folderNode.GetDescendant(NULL, NULL);

SELECT

 @folderNode AS FolderNode,

 @folderNode.ToString() AS FolderNodePath,

 @newChildFolderNode AS ChildFolderNode,

 @newChildFolderNode.ToString() AS ChildFolderNodePath;

FolderNode FolderNodePath ChildFolderNode ChildFolderNodePath

Parameter 1 Parameter 2 Description
NULL NULL New (fi rst) child node

Child Node NULL Child node that comes after the child node of parameter 1

NULL Child Node Child node that comes before the child node of parameter 2

Child Node Child Node Child node that comes between the child nodes

6/30/2008 2:09:37 PM

C03625587.indd 83
Chapter 3 Type System 83

To demonstrate how these work, let’s create the hierarchy of folders shown in Figure 3-1.

Level 0

Level 2

Level 1

C D

A

FEB

FIGURE 3-1 A simple hierarchy

We will use a simplifi ed version of the Folder table in this example.

CREATE TABLE [dbo].[Folder]

(

 [FolderNode] HIERARCHYID NOT NULL,

 [Description] NVARCHAR(50) NOT NULL

);

GO

--Add node A

DECLARE @folderNode HIERARCHYID = HIERARCHYID::GetRoot();

INSERT INTO [dbo].[Folder]

VALUES (@folderNode, ‘A’)

--Add node B (first child, so NULL, NULL)

DECLARE @childFolderNode HIERARCHYID = @folderNode.GetDescendant(NULL, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘B’)

--Add node E (second child, so Child 1, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘E’)

--Add node F (third child, so Child 2, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);

CREATE TABLE [dbo].[Folder]

(

 [FolderNode] HIERARCHYID NOT NULL,

 [Description] NVARCHAR(50) NOT NULL

);

GO

--Add node A

DECLARE @folderNode HIERARCHYID = HIERARCHYID::GetRoot();

INSERT INTO [dbo].[Folder]

VALUES (@folderNode, ‘A’)

--Add node B (first child, so NULL, NULL)

DECLARE @childFolderNode HIERARCHYID = @folderNode.GetDescendant(NULL, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘B’)

--Add node E (second child, so Child 1, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘E’)

--Add node F (third child, so Child 2, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);
INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘F’)

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘F’)

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’

6/30/2008 2:09:38 PM

84

C03625587.indd 84
Introducing SQL Server 2008

--Add node C (first child, so NULL, NULL)

SET @childFolderNode = @folderNode.GetDescendant(NULL, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘C’)

--Add node D (second child, so Child 1, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘D’)

This may at fi rst seem like a lot of work for as simple a hierarchy that is being exemplifi ed,
but really it’s just a simple process to add a node, and you would likely write a stored proce-
dure to do the work. Also, you normally wouldn’t add nodes in this fashion. You would more
likely add a set of nodes based on some existing hierarchical data (using some other hierar-
chy model) that could be inserted using a single INSERT statement with some common table
expressions (CTEs), or pass the structure in using XML and insert.

If I did want to add a node C1 between nodes C and D, here is how it could be done:

DECLARE @folderNode HIERARCHYID;

DECLARE @childfolderNode1 HIERARCHYID;

DECLARE @childfolderNode2 HIERARCHYID;

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’ --existing path /1/

SELECT @childfolderNode1 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’ --existing path /1/1/

SELECT @childfolderNode2 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘D’ --existing path /1/2/

--Add node C1 (middle child, so Child 1, Child 2)

SET @folderNode = @folderNode.GetDescendant(@childfolderNode1, @childfolderNode2);

INSERT INTO [dbo].[Folder]

VALUES (@folderNode, ‘C1’) --new path will be /1/1.1/

--Add node C (first child, so NULL, NULL)

SET @childFolderNode = @folderNode.GetDescendant(NULL, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘C’)

--Add node D (second child, so Child 1, NULL)

SET @childFolderNode = @folderNode.GetDescendant(@childFolderNode, NULL);

INSERT INTO [dbo].[Folder]

VALUES (@childFolderNode, ‘D’)

DECLARE @folderNode HIERARCHYID;

DECLARE @childfolderNode1 HIERARCHYID;

DECLARE @childfolderNode2 HIERARCHYID;

SELECT @folderNode = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’ --existing path /1/

SELECT @childfolderNode1 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’ --existing path /1/1/

SELECT @childfolderNode2 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘D’ --existing path /1/2/

--Add node C1 (middle child, so Child 1, Child 2)

SET @folderNode = @folderNode.GetDescendant(@childfolderNode1, @childfolderNode2);

INSERT INTO [dbo].[Folder]

VALUES (@folderNode, ‘C1’) --new path will be /1/1.1/
Notice how we need to know the two child nodes as well as the parent node under which the
new child is being added. In the coming section, we will see how this can be somewhat sim-
plifi ed by using some of the other methods of the HIERARCHYID data type.

6/30/2008 2:09:38 PM

C03625587.indd 85
Chapter 3 Type System 85

Querying

We have already seen two of the HIERARCHYID methods already: GetRoot and
GetDescendant. This new data type has several additional methods that allow you to deter-
mine things such as at what level the node is located; what node is the direct parent, grand-
parent, and so on; and even if one node is a descendant of another node.

Levels and Paths

The GetLevel method does exactly what its name states: gets the level of the node. The
method takes no parameters and returns a SMALLINT, which represents the level of the node
in question.

The ToString method returns a string representation of the path.

SELECT *, FolderNode.GetLevel() AS Level, FolderNode.ToString() As Path

FROM Folder;

This query produces the following results:

FolderNode Description Level Path

0x A 0 /

0x58 B 1 /1/

0x68 E 1 /2/

0x78 F 1 /3/

0x5AC0 C 2 /1/1/

0x5B40 D 2 /1/2/

The string path can be used to create a new instance of a HIERARCHYID. The static Parse
method (which is used for implicit conversion from a string) takes the string path as input
and converts it to a HIERACHYID, as shown here.

DECLARE @h1 HIERARCHYID = HIERARCHYID::Parse(‘/1/1/’);

DECLARE @h2 HIERARCHYID = ‘/1/1/’;

These two statements are functionally the same, and both of them create a node equivalent
to the FolderNode 0x5AC0 in the table above. Later in this section, this feature will be used to
generate HIERARCHYID values for an entire table in a single statement.

SELECT *, FolderNode.GetLevel() AS Level, FolderNode.ToString() As Path

FROM Folder;

FolderNode Description Level Path

DECLARE @h1 HIERARCHYID = HIERARCHYID::Parse(‘/1/1/’);

DECLARE @h2 HIERARCHYID = ‘/1/1/’;
Relationships

The IsDescendant accepts a single parameter of a HIERARCHYID data type and returns a true
value if that HIERARCHYID is a direct or indirect descendant of the node calling the method.

6/30/2008 2:09:39 PM

86

C03625587.indd 86
Introducing SQL Server 2008

For example, the following script would return all of the descendants of node B (including
node B):

DECLARE @B HIERARCHYID;

SELECT @B = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE @B.IsDescendant(FolderNode) = 1;

To have the query not return node B, simply exclude it as follows:

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE @B.IsDescendant(FolderNode) = 1

 AND FolderNode > @B;

The GetAncestor method returns a node that is n levels higher than the node calling the
method. For example, if you want to fi nd out what is the direct parent of node C:

DECLARE @C HIERARCHYID;

SELECT @C = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE FolderNode = @C.GetAncestor(1);

A node’s parent is always supposed to be unique, but because a node can have multiple chil-
dren, this method does not allow a negative value to be passed in as the parameter. You can,
however, pass a value of zero, which is equivalent to the calling node.

The Reparent method does exactly that—it changes the parent of a node. It is important to

DECLARE @B HIERARCHYID;

SELECT @B = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE @B.IsDescendant(FolderNode) = 1;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE @B.IsDescendant(FolderNode) = 1

 AND FolderNode > @B;

DECLARE @C HIERARCHYID;

SELECT @C = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

WHERE FolderNode = @C.GetAncestor(1);
note that if you reparent a node that also has any subordinates, then you need to reparent all
of the subordinates as well in order to maintain data integrity of your hierarchy (unless you
are swapping two parents or allow orphaned nodes, of course). The following shows a simple
example of moving the node C from its existing parent to a new parent of node E.

6/30/2008 2:09:39 PM

C03625587.indd 87
Chapter 3 Type System 87

DECLARE @E HIERARCHYID;

SELECT @E = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E’;

UPDATE [dbo].[Folder]

SET FolderNode = FolderNode.Reparent(FolderNode.GetAncestor(1), @E)

WHERE Description = ‘C’;

Moving a section of a tree seems like it would be a little more daunting, but the simplicity of
such an operation can only be stated in code:

DECLARE @B HIERARCHYID, @E HIERARCHYID,

 @E1 HIERARCHYID, @E2 HIERARCHYID;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

ORDER BY FolderNode

SELECT @E = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E’

SELECT @E1 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E1’

SELECT @B = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’

INSERT INTO [dbo].[Folder]

VALUES

(

 @E1.GetAncestor(1).GetDescendant(@E1, NULL)

 , ‘E2’

)

SELECT @E2 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E2’

DECLARE @E HIERARCHYID;

SELECT @E = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E’;

UPDATE [dbo].[Folder]

SET FolderNode = FolderNode.Reparent(FolderNode.GetAncestor(1), @E)

WHERE Description = ‘C’;

DECLARE @B HIERARCHYID, @E HIERARCHYID,

 @E1 HIERARCHYID, @E2 HIERARCHYID;

SELECT *, FolderNode.ToString() AS Path

FROM [dbo].[Folder]

ORDER BY FolderNode

SELECT @E = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E’

SELECT @E1 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E1’

SELECT @B = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘B’

INSERT INTO [dbo].[Folder]

VALUES

(

 @E1.GetAncestor(1).GetDescendant(@E1, NULL)

 , ‘E2’

)

SELECT @E2 = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘E2’
UPDATE [dbo].[Folder]

SET FolderNode = FolderNode.Reparent(@B.GetAncestor(1), @E2)

WHERE @B.IsDescendant(FolderNode) = 1

 AND FolderNode != @B

DELETE [dbo].[Folder]

UPDATE [dbo].[Folder]

SET FolderNode = FolderNode.Reparent(@B.GetAncestor(1), @E2)

WHERE @B.IsDescendant(FolderNode) = 1

 AND FolderNode != @B

DELETE [dbo].[Folder]

6/30/2008 2:09:39 PM

88

C03625587.indd 88
Introducing SQL Server 2008

WHERE Description = ‘E2’

UPDATE [dbo].[Folder]

SET FolderNode = @E2

WHERE FolderNode = @B

The beauty of the Reparent method is that it can be used to move a child node, grandchild
node, and so on. However, when the new parent already has children, the process goes as
follows:

1. Create a new node (E2) under the new parent (E).

2. Reparent all the subordinate nodes of B, but not B itself, under the new E2 node.

3. Remove E2.

4. Update B to be E2 by changing its HIERARCHYID to the HIERARCHYID of E2.

Please note that if E had no other children, you could simply reparent B and all of its
subordinates.

In this case, all subordinates of node B are moved from under node B to under node E2. All
the subordinates are updated in a single statement, but B requires a little more work to keep
the paths unique.

Final Thoughts

Earlier in this section, we saw some code that added a child node between two other nodes.
Here is the same functionality rewritten in a more concise manner.

DECLARE @C HIERARCHYID, @D HIERARCHYID;

SELECT @C = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’

SELECT @D = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘D’

WHERE Description = ‘E2’

UPDATE [dbo].[Folder]

SET FolderNode = @E2

WHERE FolderNode = @B

DECLARE @C HIERARCHYID, @D HIERARCHYID;

SELECT @C = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘C’

SELECT @D = FolderNode

FROM [dbo].[Folder]

WHERE Description = ‘D’
INSERT INTO [dbo].[Folder]

VALUES

(

 @C.GetAncestor(1).GetDescendant(@C, @D)

 , ‘C1’

)

INSERT INTO [dbo].[Folder]

VALUES

(

 @C.GetAncestor(1).GetDescendant(@C, @D)

 , ‘C1’

)

6/30/2008 2:09:39 PM

C03625587.indd 8
Chapter 3 Type System 89

In this example, @C represents node C and @D represents node D. We don’t need to
prefetch the parent of nodes C and D because we can use the GetAncestor method to get
that parent.

Indexing

There are two main indexing strategies that you can use for hierarchical data: depth first and
breadth first. A depth-first index would be an index on the HIERARCHYID column. The under-
lying storage of HIERARCHYID is not only compact but also in a depth-first order. Figure 3-2
shows an example of the order of nodes in a depth-first index.

Level 0

Level 2

Level 1

Level 3

3 7

1

1492

5 6

10 13

1184 12

FIGURE 3-2 Depth-first indexing

A depth-first index is best used when you are frequently querying for a node and all of its
subordinate nodes, because they are stored closer to each other in this indexing scheme.
For example, if you regularly search for a folder and its subfolders, you are best served with
a depth-first index. In Figure 3-2, all of the subordinate nodes of node 2 are between node
2 and the sibling of node 2, node 9. All the subordinates of node 3 are between node 3 and
node the sibling of 3, node 7.

Note When querying for nodes and subordinates near the top of the hierarchy, there will be
a larger number of subordinate nodes and, thus, less likelihood that a depth-first index will be
used.
A breadth-first index is best used when you frequently want to query for the direct subor-
dinates of a node, because all the nodes at a given level are always near each other in the
index. Figure 3-3 shows an example of node order in a breadth-first index.

9 6/30/2008 2:09:39 PM

C03625587
90 Introducing SQL Server 2008

Level 0

Level 2

Level 1

Level 3

5 6

1

432

10 11

7 8

13129 14

FIGURE 3-3 Breadth-fi rst indexing

In this indexing scheme, all the nodes at the same level are always adjacent to each other.
This indexing scheme is more effi cient when the hierarchy has a smaller average fanout and
many levels. As the average fanout grows in number, the effi ciency of a breadth-fi rst index
increases.

For example, the nodes at level 2 are nodes 5 through 8, and all of the direct subordinate
nodes of node 3 (level 1) are level 2 nodes 7 and 8. When node 3 has many more subordi-
nates, using a breadth-fi rst index will speed up access to these direct subordinate nodes.

Note When querying for nodes and subordinates deep in the hierarchy, there will be a larger
number of nodes in the level and, therefore, less likelihood that a breadth-fi rst index will be
used, particularly on the deepest level.

What would these two indexes look like in Transact-SQL (T-SQL)? Well, a depth-fi rst is simply
an index on a HIERARCHYID column, as shown here:

CREATE UNIQUE INDEX inFolder_FolderNode

ON [dbo].[Folder] (FolderNode) ;

A breadth-fi rst index is actually implemented as a composite index of the persisted value
of the GetLevel method and the HIERARCHYID itself. To implement this type of indexing
scheme, you need to have a computed column that has the level of the node. The following

CREATE UNIQUE INDEX inFolder_FolderNode

ON [dbo].[Folder] (FolderNode) ;
script shows the new table defi nition as well as the breadth-fi rst index implementation:

CREATE TABLE [dbo].[Folder]

(

CREATE TABLE [dbo].[Folder]

(

.indd 90 6/30/2008 2:09:40 PM

C03625587.indd 91
Chapter 3 Type System 91

 [FolderNode] HIERARCHYID NOT NULL,

 [Level] AS [FolderNode].GetLevel(), -- PERSISTED? Not in this situation

 [Description] NVARCHAR(50) NOT NULL

);

CREATE UNIQUE INDEX inFolder_LevelFolderNode

ON [dbo].[Folder] (Level, FolderNode);

When a UDT method is used as a computed column that needs to be part of an index, you
need to specify that it is PERSISTED. System CLR types, however, have no such require-
ment. So if the breadth-fi rst index is not the clustered index, then you should not persist the
GetLevel method computed column because it will be more storage effi cient and will per-
form better by not persisting it.

Limitations and Cautions

Even though this new means of managing hierarchical data is versatile and functional, it does
have some limitations of which you need to be aware. The most important item of note in
this regard is that it is not self-managing. Just because you add a HIERARCHYID column to
your table doesn’t mean that it actually has any hierarchy information, or even correct hier-
archy information, for that matter. It is just another data type, and the data needs to be man-
aged like any other column’s data. Assuming that a HIERARCHYID column is self-managed is
the same as assuming the ManagerID column is self-managed.

Now that you know that you need to manage the data in a HIERARCHYID column, I must
also point out that a HIERARCHYID column is not, by default, a unique column. To ensure you
have good data, you will need to use a primary key, a unique constraint, a trigger, or some
other mechanism.

And even if you have a unique set of HIERARCHYID values, there is no guarantee that you
have a valid hierarchy. You also need to maintain the relationships in your data. For example,
let’s say you created a table called Folder, as shown here:

CREATE TABLE [dbo].[Folder](

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL

);

GO

 [FolderNode] HIERARCHYID NOT NULL,

 [Level] AS [FolderNode].GetLevel(), -- PERSISTED? Not in this situation

 [Description] NVARCHAR(50) NOT NULL

);

CREATE UNIQUE INDEX inFolder_LevelFolderNode

ON [dbo].[Folder] (Level, FolderNode);

CREATE TABLE [dbo].[Folder](

 [FolderID] INT NOT NULL,

 [ParentFolderID] INT NULL,

 [Description] NVARCHAR(50) NULL

);

GO
That was populated as such:

INSERT INTO [dbo].[Folder]INSERT INTO [dbo].[Folder]

6/30/2008 2:09:40 PM

92

C03625587.indd 92
Introducing SQL Server 2008

VALUES

 (1, NULL, ‘A’),

 (2, 1, ‘B’),

 (3, 2, ‘C’),

 (4, 2, ‘D’),

 (5, 1, ‘E’);

And then you decided to get add a HIERARCHYID column:

ALTER TABLE [dbo].[Folder]

ADD [FolderNode] HIERARCHYID;

Now you have a HIERARCHYID column that needs to be populated, so you begin by updat-
ing the root node:

UPDATE [dbo].[Folder]

SET FolderNode = HIERARCHYID::GetRoot()

WHERE ParentFolderID IS NULL

And then you update the next level (those nodes immediately under the root node):

UPDATE [dbo].[Folder]

SET FolderNode = HIERARCHYID::GetRoot().GetDescendant(NULL, NULL)

WHERE ParentFolderID = 1

You do a quick check of the data by executing SELECT * FROM [dbo].[Folder] to reveal the
following data:

FolderID ParentFolderID Description FolderNode

1 NULL A 0x

2 1 B 0x58

3 2 C NULL

4 2 D NULL

5 1 E 0x58

What went wrong? Two of the child folders have the same FolderNode value. The query up-

VALUES

 (1, NULL, ‘A’),

 (2, 1, ‘B’),

 (3, 2, ‘C’),

 (4, 2, ‘D’),

 (5, 1, ‘E’);

ALTER TABLE [dbo].[Folder]

ADD [FolderNode] HIERARCHYID;

UPDATE [dbo].[Folder]

SET FolderNode = HIERARCHYID::GetRoot()

WHERE ParentFolderID IS NULL

UPDATE [dbo].[Folder]

SET FolderNode = HIERARCHYID::GetRoot().GetDescendant(NULL, NULL)

WHERE ParentFolderID = 1

FolderID ParentFolderID Description FolderNode
dated all the children of the root node to the same value. This means that to do a mass up-
date of HIERARCHYIDs, you need to do one of the following:

Update each node in the hierarchy one at a time using GetDescendant.

Generate paths for all of the nodes in a single query and convert to HIERARCHYID.

6/30/2008 2:09:40 PM

C03625587.indd 9
Chapter 3 Type System 93

In the next section, we will begin some practical applications of using HIERARCHYID, includ-
ing a method for the latter of these two methods for updating your existing data to use
HIERARCHYID.

Working with HIERARCHYID

To better understand how HIERARCHYID really works, we are going to take an existing set of
data that is modeled using the adjacency methodology and convert it to use HIERARCHYID.

Converting Adjacency Model to HIERARCHYID

The AdventureWorks sample database has a table of employees with a self reference to their
respective managers. The fi rst step is to create a table that will hold the HIERARCHYID-based
hierarchical representation of the employees.

USE [AdventureWorks]

GO

CREATE TABLE [HumanResources].[EmployeeHierarchy](

 EmployeeNode HIERARCHYID NOT NULL,

 EmployeeLevel AS EmployeeNode.GetLevel() PERSISTED,

 [EmployeeID] [int] NOT NULL,

 [ManagerID] [int] NULL,

 [FirstName] [nvarchar](50) NOT NULL,

 [LastName] [nvarchar](50) NOT NULL,

 [Title] [nvarchar](50) NOT NULL,

 CONSTRAINT [PK_EmployeeHierarchy_EmployeeNode]

 PRIMARY KEY CLUSTERED ([EmployeeNode] ASC)

);

GO

CREATE UNIQUE INDEX inEmployeeHierarchy_LevelNode

ON HumanResources.EmployeeHierarchy(EmployeeLevel, EmployeeNode) ;

GO

Note You should note that persisting the ManagerID fi eld is redundant, because you can use
EmployeeNode.GetAncestor(1) to get the same information in just as an effi cient manner.

USE [AdventureWorks]

GO

CREATE TABLE [HumanResources].[EmployeeHierarchy](

 EmployeeNode HIERARCHYID NOT NULL,

 EmployeeLevel AS EmployeeNode.GetLevel() PERSISTED,

 [EmployeeID] [int] NOT NULL,

 [ManagerID] [int] NULL,

 [FirstName] [nvarchar](50) NOT NULL,

 [LastName] [nvarchar](50) NOT NULL,

 [Title] [nvarchar](50) NOT NULL,

 CONSTRAINT [PK_EmployeeHierarchy_EmployeeNode]

 PRIMARY KEY CLUSTERED ([EmployeeNode] ASC)

);

GO

CREATE UNIQUE INDEX inEmployeeHierarchy_LevelNode

ON HumanResources.EmployeeHierarchy(EmployeeLevel, EmployeeNode) ;

GO
Next we are going to answer a question from the previous section. How do we generate all
of the HIERARCHYID values in a single statement (as opposed to doing it row by row)? The
answer is to generate the paths by using a combination of two CTEs and the ROW_NUMBER

3 6/30/2008 2:09:40 PM

94

C03625587.indd 94
Introducing SQL Server 2008

function. Although the following code is somewhat complex, I want you to fi rst read through
the code and see if you can fi gure out how it is working.

;WITH EH (EmployeeID, ManagerID, FirstName, LastName, Title, Position)

AS

(

 SELECT

 E.EmployeeID,

 E.ManagerID,

 C.FirstName,

 C.LastName,

 E.Title,

 ROW_NUMBER() OVER (PARTITION BY ManagerID ORDER BY EmployeeID)

 FROM HumanResources.Employee AS E

 INNER JOIN Person.Contact AS C ON C.ContactID = E.ContactID

)

, EHTemp (EmployeeNode, EmployeeID, ManagerID, FirstName, LastName, Title)

AS

(

 SELECT HIERARCHYID::GetRoot(),

 EmployeeID, ManagerID, FirstName, LastName, Title

 FROM EH

 WHERE ManagerID IS NULL

 UNION ALL

 SELECT

 CAST(EHTemp.EmployeeNode.ToString()

 + CAST(EH.Position AS VARCHAR(30)) + ‘/’ AS HIERARCHYID),

 EH.EmployeeID, EH.ManagerID, EH.FirstName, EH.LastName, EH.Title

 FROM EH

 INNER JOIN EHTemp ON EH.ManagerID = EHTemp.EmployeeID

)

INSERT INTO [HumanResources].[EmployeeHierarchy]

 (EmployeeNode,EmployeeID, ManagerID, FirstName, LastName, Title)

SELECT EmployeeNode, EmployeeID, ManagerID, FirstName, LastName, Title

FROM EHTemp

ORDER BY EmployeeNode;

The secret to this solution is twofold. The fi rst CTE creates row numbers for each set of chil-
dren by using the partitioning ability of the ROW_NUMBER function. The following query is
similar to that used in the fi rst CTE.

 SELECT

;WITH EH (EmployeeID, ManagerID, FirstName, LastName, Title, Position)

AS

(

 SELECT

 E.EmployeeID,

 E.ManagerID,

 C.FirstName,

 C.LastName,

 E.Title,

 ROW_NUMBER() OVER (PARTITION BY ManagerID ORDER BY EmployeeID)

 FROM HumanResources.Employee AS E

 INNER JOIN Person.Contact AS C ON C.ContactID = E.ContactID

)

, EHTemp (EmployeeNode, EmployeeID, ManagerID, FirstName, LastName, Title)

AS

(

 SELECT HIERARCHYID::GetRoot(),

 EmployeeID, ManagerID, FirstName, LastName, Title

 FROM EH

 WHERE ManagerID IS NULL

 UNION ALL

 SELECT

 CAST(EHTemp.EmployeeNode.ToString()

 + CAST(EH.Position AS VARCHAR(30)) + ‘/’ AS HIERARCHYID),

 EH.EmployeeID, EH.ManagerID, EH.FirstName, EH.LastName, EH.Title

 FROM EH

 INNER JOIN EHTemp ON EH.ManagerID = EHTemp.EmployeeID

)

INSERT INTO [HumanResources].[EmployeeHierarchy]

 (EmployeeNode,EmployeeID, ManagerID, FirstName, LastName, Title)

SELECT EmployeeNode, EmployeeID, ManagerID, FirstName, LastName, Title

FROM EHTemp

ORDER BY EmployeeNode;

 SELECT
 E.EmployeeID AS EmpID,

 E.ManagerID AS MgrID,

 C.LastName,

 ROW_NUMBER() OVER (PARTITION BY ManagerID ORDER BY EmployeeID) AS RowNum

 FROM HumanResources.Employee AS E

 INNER JOIN Person.Contact AS C ON C.ContactID = E.ContactID

 E.EmployeeID AS EmpID,

 E.ManagerID AS MgrID,

 C.LastName,

 ROW_NUMBER() OVER (PARTITION BY ManagerID ORDER BY EmployeeID) AS RowNum

 FROM HumanResources.Employee AS E

 INNER JOIN Person.Contact AS C ON C.ContactID = E.ContactID

6/30/2008 2:09:41 PM

C03625587.indd 95
Chapter 3 Type System 95

When executed, this query returns the following (abridged) results (formatted so the hierar-
chy is more easily read):

EmpID MgrID LastName RowNum

109 NULL Sánchez 1

6 109 Bradley 1

2 6 Brown 1

46 6 Harnpadoungsataya 2

106 6 Gibson 3

119 6 Williams 4

203 6 Eminhizer 5

269 6 Benshoof 6

271 6 Wood 7

272 6 Dempsey 8

12 109 Duffy 2

3 12 Tamburello 1

4 3 Walters 1

9 3 Erickson 2

11 3 Goldberg 3

158 3 Miller 4

79 158 Margheim 1

114 158 Matthew 2

217 158 Raheem 3

263 3 Cracium 5

5 263 D’Hers 1

265 263 Galvin 2

267 3 Sullivan 6

270 3 Salavaria 7

Etc. Etc. Etc. Etc.

What is happening is that instead of generating a row number for all the rows, row num-
bers are generated for each group of children for a given parent. So all the subordinates of
Employee Tamburello (ID 3) have a row number from 1 to 4. Children of the folder with an ID

EmpID MgrID LastName RowNum
of 1 (folders 2 and 5 in this case) will have their own set of row numbers.

This partitioned row numbering alone doesn’t solve the problem at hand. You need to com-
bine the partitioned row numbers with the ability to parse a string representation of the path
into a HIERARCHYID. This is done via a recursive CTE query and a little path construction
magic.

6/30/2008 2:09:42 PM

96

C03625587.indd 96
Introducing SQL Server 2008

In the anchor query portion of the CTE, we are retrieving a root node using
HIERARCHYID::GetRoot(). This establishes the root of the hierarchy and applies only to the
root node (ManagerID IS NULL). In the recursive query portion, that same column is creating
a new path based on the existing path of the parent, EHTemp.EmployeeNode.ToString(), and
a generated relative path based on the partitioned row number results, CAST(EH.Position AS
VARCHAR(30)) + ‘/’. The two pieces are concatenated and then cast as a HIERARCHYID data
type, as shown here:

CAST(EHTemp.EmployeeNode.ToString()

 + CAST(EH.Position AS VARCHAR(30)) + ‘/’ AS HIERARCHYID)

The following table shows how the path of the parent and the partitioned row number relate
to the new path of each of the nodes in the hierarchy.

EmpID MgrID LastName RowNum Parent Path Relative Path New Path

109 NULL Sánchez 1 NULL N/A N/A

6 109 Bradley 1 / 1/ /1/

2 6 Brown 1 /1/ 1/ /1/1/

46 6 Harnpadoungsataya 2 /1/ 2/ /1/2/

106 6 Gibson 3 /1/ 3/ /1/3/

119 6 Williams 4 /1/ 4/ /1/4/

203 6 Eminhizer 5 /1/ 5/ /1/5/

269 6 Benshoof 6 /1/ 6/ /1/6/

271 6 Wood 7 /1/ 7/ /1/7/

272 6 Dempsey 8 /1/ 8/ /1/8/

12 109 Duffy 2 / 2/ /2/

3 12 Tamburello 1 /2/ 1/ /2/1/

4 3 Walters 1 /2/1/ 1/ /2/1/1/

9 3 Erickson 2 /2/1/ 2/ /2/1/2/

11 3 Goldberg 3 /2/1/ 3/ /2/1/3/

158 3 Miller 4 /2/1/ 4/ /2/1/4/

79 158 Margheim 1 /2/1/4/ 1/ /2/1/4/1/

114 158 Matthew 2 /2/1/4/ 2/ /2/1/4/2/

217 158 Raheem 3 /2/1/4/ 3/ /2/1/4/3/

263 3 Cracium 5 /2/1/ 5/ /2/1/5/

CAST(EHTemp.EmployeeNode.ToString()

 + CAST(EH.Position AS VARCHAR(30)) + ‘/’ AS HIERARCHYID)

EmpID MgrID LastName RowNum Parent Path Relative Path New Path
5 263 D’Hers 1 /2/1/5/ 1/ /2/1/5/1/

265 263 Galvin 2 /2/1/5/ 2/ /2/1/5/2/

267 3 Sullivan 6 /2/1/ 6/ /2/1/6/

270 3 Salavaria 7 /2/1/ 7/ /2/1/7/

6/30/2008 2:09:42 PM

C03625587.indd 97
Chapter 3 Type System 97

When the newly created path is cast to HIERARCHYID, the Parse method is invoked behind
the scenes, which takes a path and converts it to a HIERARCHYID data type.

Converting XML to a Hierarchy

Because I mentioned this earlier in the chapter, I feel compelled to include a code sample of
converting an XML structure into a relational structure using HIERARCHYID.

DECLARE @x XML =

‘

 <B id=”2”>

 <C id=”3”/>

 <D id=”4”/>

 <E id=”5”/>

 <F id=”6”/>

’;

WITH Folders AS

(

SELECT

 t.c.value(‘@id’, ‘int’) AS ID

 , NULLIF(t.c.value(‘../@id’, ‘nvarchar(50)’), ‘’) AS ParentID

 , t.c.value(‘local-name(.)’, ‘nvarchar(50)’) AS Description

 , t.c.value(‘for $s in . return count(../*[. << $s]) + 1’, ‘int’) AS RowNum

FROM @x.nodes(‘//*’) AS t(c)

)

, FolderTree AS

(

 SELECT ID, ParentID, Description, RowNum,

 HIERARCHYID::GetRoot() AS FolderNode

 FROM Folders

 WHERE ParentID IS NULL

 UNION ALL

 SELECT F.ID, F.ParentID, F.Description, F.RowNum,

 CAST(FT.FolderNode.ToString() + CAST(F.RowNum AS varchar(50)) + ‘/’

 AS HIERARCHYID)

 FROM Folders AS F

 INNER JOIN FolderTree AS FT ON F.ParentID = FT.ID

)

SELECT ID, ParentID, Description, FolderNode, FolderNode.ToString()

FROM FolderTree

ORDER BY FolderNode;

DECLARE @x XML =

‘

 <B id=”2”>

 <C id=”3”/>

 <D id=”4”/>

 <E id=”5”/>

 <F id=”6”/>

’;

WITH Folders AS

(

SELECT

 t.c.value(‘@id’, ‘int’) AS ID

 , NULLIF(t.c.value(‘../@id’, ‘nvarchar(50)’), ‘’) AS ParentID

 , t.c.value(‘local-name(.)’, ‘nvarchar(50)’) AS Description

 , t.c.value(‘for $s in . return count(../*[. << $s]) + 1’, ‘int’) AS RowNum

FROM @x.nodes(‘//*’) AS t(c)

)

, FolderTree AS

(

 SELECT ID, ParentID, Description, RowNum,

 HIERARCHYID::GetRoot() AS FolderNode

 FROM Folders

 WHERE ParentID IS NULL

 UNION ALL

 SELECT F.ID, F.ParentID, F.Description, F.RowNum,

 CAST(FT.FolderNode.ToString() + CAST(F.RowNum AS varchar(50)) + ‘/’

 AS HIERARCHYID)

 FROM Folders AS F

 INNER JOIN FolderTree AS FT ON F.ParentID = FT.ID

)

SELECT ID, ParentID, Description, FolderNode, FolderNode.ToString()

FROM FolderTree

ORDER BY FolderNode;
You may be thinking to yourself, “Hey, this looks familiar,” and if you are, you are correct.
Instead of using the ROW_NUMBER function in T-SQL, a little XQuery trick is used to achieve
the same result, partitioned row numbers. Once that is included with an ID and ParentID, we

6/30/2008 2:09:43 PM

C03625587
98 Introducing SQL Server 2008

can use the same methodology as before to generate HIERARCHYID values for all rows in a
single statement using a CTE and some basic path manipulation of the HIERARCHYID.

FILESTREAM

There are two camps when it comes to how to handle BLOB data. The first group stores the
BLOB data in the database as VARBINARY(MAX). This allows for complete control from SQL
Server, more secure data, and better data integrity, and the data is included with SQL Server
backups and restores.

The other group stores the BLOB data in the file system and stores the location of the file in
the database. This methodology allows for easier and direct access to the data, which reduc-
es the workload of SQL Server. The files can be stored in a different location on the network,
reducing the network load of the SQL Server.

The new FILESTREAM feature in SQL Server 2008 works something like a hybrid of these
two methodologies. It enables SQL Server applications to store the unstructured (BLOB)
data directly on the file system (outside the database file) leveraging the rich streaming ap-
plication programming interfaces (APIs) and high streaming performance of the file system.
Compatibility with T-SQL programming is maintained. SQL FILESTREAM maintains transac-
tional consistency between the unstructured data and the corresponding structured data
without having to create custom cleanup logic at the application level. FILESTREAM also en-
ables deep integration with T-SQL and manageability features—ACID properties (atomicity,
consistency, isolation, and durability), triggers, full-text search, backup and restore, security,
database consistency checks (DBCCs), and replication. Unstructured data can be accessed
and manipulated using a transacted dual programming model: T-SQL and the Win32 stream-
ing API set.

Before we delve into the finer points of FILESTREAM, however, we need to get it configured
for use.

Configuring FILESTREAM

To use the FILESTREAM ability, it first needs to be configured. Configuration comes in

two layers: one for the Windows layer and the other for the SQL Server instance layer.
Configuring the Windows layer is done either during setup or, if post-setup, using SQL Server
Configuration Manager. From SQL Server Configuration Manager, select SQL Server Services
on the left, then right-click the SQL Server instance service, and choose Properties. Then se-
lect the FILESTREAM tab, as shown in Figure 3-4.

.indd 98 6/30/2008 2:09:43 PM

C03625587.indd
Chapter 3 Type System 99

FIGURE 3-4 FILESTREAM confi guration using SQL Server Confi guration Manager

Note Confi guring the Windows layer requires administrator privilege on the server.

The Windows layer settings allow you to specify which type of access—T-SQL or Win32 (fi le
input/output, or I/O) streaming—and allow you to specify the share name used and if re-
mote access to the fi le I/O stream is allowed. You should note that to enable fi le I/O stream
access, you must fi rst enable T-SQL access.

If you are unsure of the share name or level information, you can easily fi nd out by executing
this query:

SELECT SERVERPROPERTY (‘FilestreamShareName’) AS ShareName,

 SERVERPROPERTY (‘FilestreamConfiguredLevel’) AS ConfiguredLevel,

 SERVERPROPERTY (‘FilestreamEffectiveLevel’) AS EffectiveLevel;

Note You cannot change the share name unless you fi rst disable FILESTREAM. Once disabled,

SELECT SERVERPROPERTY (‘FilestreamShareName’) AS ShareName,

 SERVERPROPERTY (‘FilestreamConfiguredLevel’) AS ConfiguredLevel,

 SERVERPROPERTY (‘FilestreamEffectiveLevel’) AS EffectiveLevel;
you can re-enable with a different share name.

The share name you choose is indeed a Windows server level share and can be seen via the
Computer Management administrator application, as shown in Figure 3-5.

 99 6/30/2008 2:09:43 PM

100

C03625587.indd 10
Introducing SQL Server 2008

FIGURE 3-5 Computer Management Shares and Properties for the MSSQLSERVER share

The level of network access will affect the security on the share. If network access is enabled,
then the share permissions are set for the special group Authenticated Users. If network ac-
cess is disabled, however, then the share still exists, but the Everyone group is explicitly de-
nied access to the share. And if fi le I/O stream access is disabled, the share is removed from
the server altogether.

Once the Windows layer has been confi gured, you will still need to confi gure the SQL Server
instance layer, which is done using the system stored procedure sp_confi gure. The following
statement enables FILESTREAM, with T-SQL and Win32 streaming access.

EXEC sp_configure ‘filestream access level’, 2;

The confi guration value determines both the state (enabled or disabled) as well as the access
level, as shown in this table.

Confi guration Value Description

0 Disabled. This is the default value.

EXEC sp_configure ‘filestream access level’, 2;

Confi guration Value Description
1 Enabled only for Transact-SQL access.

2 Enabled for Transact-SQL and Win32 streaming access.

This two-layered approach to confi guration is done for security purposes. It requires that the
server administrator and the database administrator (DBA) both enable access. Also, because

0 6/30/2008 2:09:44 PM

C03625587.indd 101
Chapter 3 Type System 101

the DBA should not control which shares are created on a server, that responsibility is left to
the server administrator. If the two settings differ, the least secure one is used. For example,
if using SQL Server Confi guration Manager, fi le I/O stream access is disabled at the Windows
layer, but using sp_confi gure, it is enabled on the SQL Server instance layer, you will not be
able to use fi le I/O to access the unstructured data via Win32 APIs.

Using FILESTREAM

Once FILESTREAM is enabled in both layers, you can begin using it. FILESTREAM is an exten-
sion to a VARBINARY(MAX) column defi nition, that allows the column to store the BLOB data
in the fi le system.

Defi ning the Database

To use the feature, the database must have a FILESTREAM FILEGROUP defi ned. The following
script creates a database named FileStreamDatabase that has the additional FILEGROUP that
CONTAINS FILESTREAM.

USE master;

GO

IF EXISTS (

 SELECT * FROM sys.databases

 WHERE name = N’FileStreamDatabase’

)

 DROP DATABASE FileStreamDatabase

GO

CREATE DATABASE FileStreamDatabase ON PRIMARY

 (NAME = FileStreamDatabase_data,

 FILENAME = N’C:\FileStreamDatabase\FileStreamDatabase_data.mdf’,

 SIZE = 10MB,

 MAXSIZE = 50MB,

 FILEGROWTH = 15%),

FILEGROUP FileStreamDatabase_Filestream_FileGroup CONTAINS FILESTREAM

 (NAME = FileStreamDatabase_Resumes,

 FILENAME = N’C:\FileStreamDatabase\Photos’)

LOG ON

 (NAME = ‘FileStreamDatabase_log’,

 FILENAME = N’C:\FileStreamDatabase\FileStreamDatabaseB_log.ldf’,

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB);

GO

USE master;

GO

IF EXISTS (

 SELECT * FROM sys.databases

 WHERE name = N’FileStreamDatabase’

)

 DROP DATABASE FileStreamDatabase

GO

CREATE DATABASE FileStreamDatabase ON PRIMARY

 (NAME = FileStreamDatabase_data,

 FILENAME = N’C:\FileStreamDatabase\FileStreamDatabase_data.mdf’,

 SIZE = 10MB,

 MAXSIZE = 50MB,

 FILEGROWTH = 15%),

FILEGROUP FileStreamDatabase_Filestream_FileGroup CONTAINS FILESTREAM

 (NAME = FileStreamDatabase_Resumes,

 FILENAME = N’C:\FileStreamDatabase\Photos’)

LOG ON

 (NAME = ‘FileStreamDatabase_log’,

 FILENAME = N’C:\FileStreamDatabase\FileStreamDatabaseB_log.ldf’,

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB);

GO
You will notice that the FILENAME parameter for the FILESTREAM FILEGROUP is a path and
not a specifi c fi le. The last folder in the path must not exist when creating the database, but
the path up to (but not including) the last folder must exist. In this example above, the path

6/30/2008 2:09:44 PM

1

C03625587.in
02 Introducing SQL Server 2008

C:\FileStreamDatabase\ must exist, but C:\FileStreamDatabase\Photos\ must not exist. This
folder is known as a data container.

Important It is important to ensure that only the SQL Server instance service account be al-
lowed to access a data container (folder). You should use access control lists (ACLs) to protect the
data container such that the only account with access is the service account, which is granted full
rights to the data container.

Defi ning the Table

Once the database is created with a FILESTREAM FILEGROUP, you can defi ne tables with
FILESTREAM columns, as shown here:

CREATE TABLE dbo.Product

(

 ProductID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 ProductName NVARCHAR(50) NOT NULL,

 ListPrice MONEY NOT NULL,

 ProductImage VARBINARY(MAX) FILESTREAM

);

I’m going to populate this table with some data from the AdventureWorks sample database:

INSERT INTO Product

SELECT NEWID(), P.Name, P.ListPrice, PP.ThumbNailPhoto

FROM AdventureWorks.Production.Product AS P

 INNER JOIN AdventureWorks.Production.ProductProductPhoto AS PPP

 ON P.ProductID = PPP.ProductID

 INNER JOIN AdventureWorks.Production.ProductPhoto AS PP

 ON PPP.ProductPhotoID = PP.ProductPhotoID

WHERE PP.ThumbnailPhotoFileName != ‘no_image_available_small.gif’

You should also note that the table requires a unique UNIQUEIDENTIFIER column that is de-
fi ned with ROWGUIDCOL. If the table does not have such a column and attempts to defi ne a
FILESTREAM, the CREATE TABLE statement will fail.

Note For tables that are not partitioned, all FILESTREAM columns are stored in a single

CREATE TABLE dbo.Product

(

 ProductID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 ProductName NVARCHAR(50) NOT NULL,

 ListPrice MONEY NOT NULL,

 ProductImage VARBINARY(MAX) FILESTREAM

);

INSERT INTO Product

SELECT NEWID(), P.Name, P.ListPrice, PP.ThumbNailPhoto

FROM AdventureWorks.Production.Product AS P

 INNER JOIN AdventureWorks.Production.ProductProductPhoto AS PPP

 ON P.ProductID = PPP.ProductID

 INNER JOIN AdventureWorks.Production.ProductPhoto AS PP

 ON PPP.ProductPhotoID = PP.ProductPhotoID

WHERE PP.ThumbnailPhotoFileName != ‘no_image_available_small.gif’
FILESTREAM FILEGROUP. For tables that are partitioned, you use the FILESTREAM_ON option of
the CREATE TABLE statement, and you must supply a partition scheme that uses the same parti-
tion function and partition columns as the partitions scheme for the table.

Also, although only a single FILESTREAM FILEGROUP can be used for non-partitioned tables, you
can have multiple columns that specify the FILESTREAM option, as shown here:

dd 102 6/30/2008 2:09:44 PM

C03625587.indd 103
Chapter 3 Type System 103

CREATE TABLE dbo.ProductImage

(

 ProductID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 SmallProductImage VARBINARY(MAX) FILESTREAM,

 LargeProductImage VARBINARY(MAX) FILESTREAM

);

Updating the Data

You can always update the data in the VARBINARY(MAX) column by using T-SQL. The INSERT
statement in the previous section shows one example of such an action. As far as T-SQL is
concerned, this is a VARBINARY(MAX) column and is treated as such. Behind the scenes, SQL
Server is updating the data in a fi le in the fi le system instead of in a SQL Server data fi le.

When directly accessing the fi le, however, you still need to work with T-SQL. The process
goes as follows:

1. Start a transaction.

a. Get the fi le’s path using the PathName method of the FILESTREAM column.

b. Get the transaction context token using the GET_FILESTREAM_TRANSACTION_
CONTEXT function.

2. Return the path and transaction token to the client.

3. Call the OpenSqlFilestream API method to obtain a Win32 handle using the path and
transaction token.

a. Access the fi le using the Win32 API (ReadFile, WriteFile, and so on).

4. Close the Win32 handle using the CloseHandle API method.

5. Commit the transaction (of course, you can also rollback).

The following pseudo-script demonstrates how Win32 fi le stream access is done:

--1: Begin a transaction.

BEGIN TRANSACTION;

--2: Get the path of a FILESTREAM file.

DECLARE @PathName nvarchar(max) =

 (

 SELECT TOP 1 ProductImage.PathName()

CREATE TABLE dbo.ProductImage

(

 ProductID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 SmallProductImage VARBINARY(MAX) FILESTREAM,

 LargeProductImage VARBINARY(MAX) FILESTREAM

);

--1: Begin a transaction.

BEGIN TRANSACTION;

--2: Get the path of a FILESTREAM file.

DECLARE @PathName nvarchar(max) =

 (

 SELECT TOP 1 ProductImage.PathName()
 FROM Product

 WHERE ProductID = ‘50d9dcfd-dd3c-4a48-ac6e-4e8f86986be9’

);

--3: Get the transaction context.

 FROM Product

 WHERE ProductID = ‘50d9dcfd-dd3c-4a48-ac6e-4e8f86986be9’

);

--3: Get the transaction context.

6/30/2008 2:09:44 PM

C03625587
104 Introducing SQL Server 2008

DECLARE @TransactionToken varbinary(max);

SET @TransactionToken = GET_FILESTREAM_TRANSACTION_CONTEXT ();

--At this point, you would return these values to the client

SELECT @PathName, @TransactionToken ;

/*

4: Call the OpenSqlFilestream API to obtain a Win32 handle

by passing in the path and transaction token from above. Next

using the Win32 hanlde you got from OpenSqlFilestream,

you can call the various Win32 API functions such as ReadFile(),

WriteFile(), TransitFile(), and so on. Of course, be sure to

call CloseHandle() when you are done working with the file.

*/

--5: You must then COMMIT or ROLLBACK the transaction.

COMMIT TRANSACTION;

For the client application to work with the fi le, you must return back from T-SQL two things:
a logical path to the fi le and a transaction token. Although the path looks like a valid path, it
is not usable except by the OpenSqlFilestream API. The transaction scope can be managed
from the client and is required to return a transaction token. If you call the GET_FILESTREAM_
TRANSACTION_CONTEXT function when not in a transaction, it returns NULL.

Spatial Data Types

I was recently involved in a project involving law enforcement (this is not a euphemism for
being arrested), and, as part of the data architecture, we realized that it would be great if we
could identify certain types of information on a map of the area in question—items such as
locations of booted vehicles, sex offenders, or any number of other items.

Perhaps I’m working on a real estate system and want to be able to show in what school
district or congressional district a house is located. Or maybe I want to be able to fi nd retail
stores in relation to a house, or maybe the nearest airports.

And so, may I introduce to you the new spatial data types of SQL Server 2008. The
GEOGRAPHY data type is used to represent geodetic spatial data, items on the oblate spher-
oid, or slightly fl attened sphere that is our planet Earth. The GEOMETRY data type represents
planar spatial data, or items on fl at surfaces. Both of these are implemented as system CLR

DECLARE @TransactionToken varbinary(max);

SET @TransactionToken = GET_FILESTREAM_TRANSACTION_CONTEXT ();

--At this point, you would return these values to the client

SELECT @PathName, @TransactionToken ;

/*

4: Call the OpenSqlFilestream API to obtain a Win32 handle

by passing in the path and transaction token from above. Next

using the Win32 hanlde you got from OpenSqlFilestream,

you can call the various Win32 API functions such as ReadFile(),

WriteFile(), TransitFile(), and so on. Of course, be sure to

call CloseHandle() when you are done working with the file.

*/

--5: You must then COMMIT or ROLLBACK the transaction.

COMMIT TRANSACTION;
types, so, like HIERARCHYID, they do not require you to enable CLR in order to use it.

Note This topic could fi ll a sizable book on its own, so bear in mind that we are only scratching
the surface of spatial data in this introductory-level book.

.indd 104 6/30/2008 2:09:45 PM

C03625587.indd 105
Chapter 3 Type System 105

Types of Spatial Data

As mentioned previously, there are two data types in SQL Server 2008 that can represent
spatial data, GEOMETRY and GEOGRAPHY. There are a total of 11 different spatial data ob-
jects, although only 7 of them are instantiable: Point, LineString, Polygon, GeometryCollection,
MultiPoint, MultiLine, and MultiPolygon. Figure 3-6 shows the entire hierarchy of all 11 (the
instantiable ones are shaded dark gray).

Polygon

LineString

MultiSurface

MultiCurve

MultiPoint

MultiPolygon

MultiLineString

Curve

Surface

GeometryCollection

Point

Geometry

FIGURE 3-6 Spatial data type hierarchy

Working with the Spatial Data Types

To best show how these various instant types work, I am going to use the following shapes
(numbered 1 through 8):

1. Polygon: A square with a small hole in the middle.

2. Polygon: A square located within polygon 1.

3. Polygon: A square located in the hole of polygon 1.
4. Polygon: A pentagon that, although is within the outer boundaries of polygon 1, covers
parts of polygon 1 and the hole within polygon 1.

5. Polygon: A square that shares a border with polygon 1.

6. LineString: A line that touches polygon 1.

6/30/2008 2:09:45 PM

106

C03625587.indd 106
Introducing SQL Server 2008

7. MultiLineString: Two lines, one of which crosses polygons 1 and 5 and the other which
touches polygon 5.

8. MultiPolygon: Four squares, three of which are wholly contained within polygon 1 and
a fourth which lies outside of polygon 1.

Figure 3-7 shows how these spatial instances relate to each other.

0 10 20

10

0

8

8

8

8

6

2

3

1

4

7

5

FIGURE 3-7 A collection of various spatial instance types

The following script creates and loads the table that holds these eight GEOMETRY object
instances.

USE TempDB

GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Shape]’) AND

type in (N’U’))

USE TempDB

GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Shape]’) AND

type in (N’U’))
 DROP TABLE [dbo].[Shape]

GO

CREATE TABLE [dbo].[Shape]

(

 DROP TABLE [dbo].[Shape]

GO

CREATE TABLE [dbo].[Shape]

(

6/30/2008 2:09:46 PM

C03625587.indd 107
Chapter 3 Type System 107

 ShapeID INT IDENTITY(1,1) NOT NULL,

 Shape GEOMETRY NOT NULL

)

GO

INSERT INTO Shape (Shape)

VALUES

 (GEOMETRY::STGeomFromText

 (‘POLYGON((0 0, 15 0, 15 15, 0 15, 0 0),(6 6, 6 9, 9 9, 9 6, 6 6))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((6 11, 6 14, 9 14, 9 11, 6 11))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((7 7, 7 8, 8 8, 8 7, 7 7))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((8 3, 6 5, 8 9, 14 9, 14 3, 8 3))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((15 10, 15 15, 20 15, 20 10, 15 10))’, 0)),

 (GEOMETRY::STGeomFromText(‘LINESTRING(5 15, 10 20)’, 0)),

 (GEOMETRY::STGeomFromText

 (‘MULTILINESTRING((20 10, 10 15, 20 20),(20 15, 15 20))’, 0)),

 (GEOMETRY::STGeomFromText

 (‘MULTIPOLYGON(

 ((1 16, 1 20, 5 20, 5 16, 1 16)),

 ((1 11, 1 14, 4 14, 4 11, 1 11)),

 ((1 7, 1 9, 3 9, 3 7, 1 7)),

 ((1 3, 1 4, 2 4, 2 3, 1 3)))’

 , 0));

Now we just need to know what we want to know about these shapes. Perhaps you want
to know the area, maximum dimension, and the geometry type of each of these shapes. A
simple query like the following could tell you:

SELECT

 ShapeID,

 Shape.STArea() AS Area,

 Shape.STDimension() AS Dimension,

 Shape.STGeometryType() AS GeometryType

FROM Shape;

Executing the preceding query gives you the following results:

ShapeID Area Dimension GeometryType

1 216 2 Polygon

2 9 2 Polygon

3 1 2 Polygon

4 42 2 Polygon

 ShapeID INT IDENTITY(1,1) NOT NULL,

 Shape GEOMETRY NOT NULL

)

GO

INSERT INTO Shape (Shape)

VALUES

 (GEOMETRY::STGeomFromText

 (‘POLYGON((0 0, 15 0, 15 15, 0 15, 0 0),(6 6, 6 9, 9 9, 9 6, 6 6))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((6 11, 6 14, 9 14, 9 11, 6 11))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((7 7, 7 8, 8 8, 8 7, 7 7))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((8 3, 6 5, 8 9, 14 9, 14 3, 8 3))’, 0)),

 (GEOMETRY::STGeomFromText(‘POLYGON((15 10, 15 15, 20 15, 20 10, 15 10))’, 0)),

 (GEOMETRY::STGeomFromText(‘LINESTRING(5 15, 10 20)’, 0)),

 (GEOMETRY::STGeomFromText

 (‘MULTILINESTRING((20 10, 10 15, 20 20),(20 15, 15 20))’, 0)),

 (GEOMETRY::STGeomFromText

 (‘MULTIPOLYGON(

 ((1 16, 1 20, 5 20, 5 16, 1 16)),

 ((1 11, 1 14, 4 14, 4 11, 1 11)),

 ((1 7, 1 9, 3 9, 3 7, 1 7)),

 ((1 3, 1 4, 2 4, 2 3, 1 3)))’

 , 0));

SELECT

 ShapeID,

 Shape.STArea() AS Area,

 Shape.STDimension() AS Dimension,

 Shape.STGeometryType() AS GeometryType

FROM Shape;

ShapeID Area Dimension GeometryType
5 25 2 Polygon

6 0 1 LineString

7 0 1 MultiLineString

8 30 2 MultiPolygon

6/30/2008 2:09:46 PM

108

C03625587.indd 108
Introducing SQL Server 2008

These methods (along with several others) are used to report back information about a shape
instance. However, what if you want to compare two different shape instances? Many of the
methods available for the GEOMETRY data type allow comparisons such as:

SELECT

 S1.ShapeID AS Shape1

 ,S2.ShapeID AS Shape2

 ,S1.Shape.STCrosses(S2.Shape) AS STCrosses

 ,S1.Shape.STIntersects(S2.Shape) AS STIntersects

 ,S1.Shape.STTouches(S2.Shape) AS STTouches

 ,S1.Shape.STWithin(S2.Shape) AS STWithin

 ,S1.Shape.STContains(S2.Shape) AS STContains

 ,S1.Shape.STEquals(S2.Shape) AS STEquals

 ,S1.Shape.STDifference(S2.Shape).STAsText() AS STDifference

 ,S1.Shape.STIntersection(S2.Shape).STAsText() AS STIntersection

 ,S1.Shape.STUnion(S2.Shape).STAsText() AS STUnion

 ,S1.Shape.STDistance(S2.Shape) AS STDistance

FROM Shape AS S1

 CROSS JOIN Shape AS S2

WHERE S1.ShapeID > S2.ShapeID

ORDER BY S1.ShapeID, S2.ShapeID

This query compares all the shape instances with each and returns the results from the fol-
lowing methods:

Method Name Description

STIntersects Returns True if the two shape instances intersect, even if by a single point.
When True, the corresponding STIntersection method will always re-
turn some shape instance. When False, STIntersection returns an empty
GeometryCollection.

STWithin Returns True if the shape instance that is calling the method falls entirely within
the shape instance that is passed in as the method parameter. Unlike most
methods, the order of the shape instances is important for this method.

STContains The reverse of the STWithin method; returns True if the shape instance that
is calling the method entirely contains the shape instance that is passed in as
the method parameter. The only time both STWithin and STContains can both
return True for the same set of shape instances is when the two shape instances
are equal.

STEquals Returns True if the two shape instances are identical.

STDifference Returns the difference of the two shape instances as a shape.

STIntersection Returns the intersection of the two shape instances as a shape.

SELECT

 S1.ShapeID AS Shape1

 ,S2.ShapeID AS Shape2

 ,S1.Shape.STCrosses(S2.Shape) AS STCrosses

 ,S1.Shape.STIntersects(S2.Shape) AS STIntersects

 ,S1.Shape.STTouches(S2.Shape) AS STTouches

 ,S1.Shape.STWithin(S2.Shape) AS STWithin

 ,S1.Shape.STContains(S2.Shape) AS STContains

 ,S1.Shape.STEquals(S2.Shape) AS STEquals

 ,S1.Shape.STDifference(S2.Shape).STAsText() AS STDifference

 ,S1.Shape.STIntersection(S2.Shape).STAsText() AS STIntersection

 ,S1.Shape.STUnion(S2.Shape).STAsText() AS STUnion

 ,S1.Shape.STDistance(S2.Shape) AS STDistance

FROM Shape AS S1

 CROSS JOIN Shape AS S2

WHERE S1.ShapeID > S2.ShapeID

ORDER BY S1.ShapeID, S2.ShapeID

Method Name Description
STUnion Returns the union of the two shape instances as a shape.

STDistance Returns the closest distance between the two shape instances.

Before I move on, I’d like to show some of the results from STDifference, STIntersection, and
STUnion. For example, shape 1 and shape 4 are defi ned as follows:

6/30/2008 2:09:46 PM

C03625587.indd 109
Chapter 3 Type System 109

Shape 1 POLYGON ((0 0, 15 0, 15 15, 0 15, 0 0), (6 6, 6 9, 9 9, 9 6, 6 6))

Shape 2 POLYGON ((8 3, 6 5, 8 9, 14 9, 14 3, 8 3))

And here are the methods and the return values:

STDifference POLYGON ((0 0, 15 0, 15 15, 0 15, 0 0), (8 3, 6 5, 6.5 6, 6 6, 6 9, 8 9, 9 9,
14 9, 14 3, 8 3))

STIntersection GEOMETRYCOLLECTION (LINESTRING (9 9, 8 9), POLYGON ((8 3, 14 3,
14 9, 9 9, 9 6, 6.5 6, 6 5, 8 3)))

STUnion POLYGON ((0 0, 15 0, 15 15, 0 15, 0 0), (6 6, 6 9, 8 9, 6.5 6, 6 6))

As shown above, the STDifference and STUnion methods both return a Polygon, but the
STIntersection method returns a GeometryCollection. Figure 3-8 shows what the resulting
shape instance intersection looks like.

0 10 20

10

0

8

8

8

8

6

2

3

1

7

5

4

FIGURE 3-8 The resulting GEOMETRY from the STIntersection method

Notice that there is a small line protruding from the upper left corner of the polygon labeled
4. Because a polygon cannot contain such a line, the results are a LineString from point (8, 9)
to point (9, 9), and the remainder is the Polygon.

6/30/2008 2:09:47 PM

1

C03625587.in
10 Introducing SQL Server 2008

Spatial Indexing

Now that you have these two new spatial data types, how can you use them efficiently? Like
the XML data type, spatial types have a special indexing ability that is focused on optimizing
the querying abilities, as well as the storage of said index data.

Spatial indexes use a decomposition methodology that partitions the area being indexed into
a grid. A second layer (or level) contains grid cells from the first layer, each of which is broken
down into another grid. This process continues for a total of four layers, each containing a
more detailed breakdown of the previous layer. By default, each layer uses an 8x8 grid break-
down as its basis, which means a default spatial index would be decomposed as follows:

Level 1 would be an 8x8 grid, or 64 cells.

Level 2 would have an 8x8 grid for each of the 64 cells in level 1, or 4,096 cells.

Level 3 would have an 8x8 grid for each of the 4,096 cells in level 2, or 262,144 cells.

Level 4 would have an 8x8 grid for each of the 262,144 cells in level 3, or 16,777,216
cells.

When creating the index, you can override the density of the grid at each level. There are
three levels of density available to use:

LOW Uses a 4x4 grid for a total of 16 cells

MEDIUM Uses an 8x8 grid, or 64 cells

HIGH Uses a 16x16 grid, or 256 cells

Once the index decomposes the space into the four levels, it then begins to tessellate each
spatial object on a row-by-row basis. Tessellation is the process that fits the object into the
grid levels, starting at level 1, and working down until the Cells-Per-Object rule states that it
should stop processing the object. You can use the spatial index’s CELLS_PER_OBJECT option
to any integer value from 1 to 8,192.

The default for the CELLS_PER_OBJECT option is 16; this default value generally provides a
good balance between the index precision and the size of the index. As you increase this
number, the precision increases but so does the size of the index, and a large index can ad-
versely affect performance.
More Info The tessellation process for both the GEOMETRY and GEOGRAPHY data types is
fascinating, but alas, it is also beyond the scope of this book. For further reading on how SQL
Server breaks down a plane or the earth into increasingly denser grids, see the “Spatial Indexing
Overview” topic in SQL Server 2008 Books Online.

dd 110 6/30/2008 2:09:47 PM

C03625587.indd 111
Chapter 3 Type System 111

Spatial Index Rules and Restrictions

Like all features, the ability of spatial indexes is not without limit.

The table in which you create the spatial index must have a clustered primary key with
15 or fewer key columns.

You can have multiple spatial indexes (up to 249) per table.

Spatial indexes are not usable with indexed views.

When using a GEOMETRY_GRID tessellation, you can additionally supply a bounding
box for the index. These options are not available for GEOGRAPHY_GRID because it
uses the whole globe as its bounding box.

Creating a Spatial Index

You can create a spatial index using SQL Server Management Studio (SSMS) or T-SQL. For
example, using the following T-SQL code, I can create a spatial index on a GEOGRAPHY data
type column that uses LOW density for levels 1 and 4, uses MEDIUM density for levels 2 and
3, and uses at most 16 cells to defi ne any object in the index:

CREATE SPATIAL INDEX [IXS_KeyGeographicLocation_KeyGeographicLocation]

ON [dbo].[KeyGeographicLocation]

(

 [KeyGeographicLocation]

)

USING GEOGRAPHY_GRID

WITH

(

 GRIDS =(LEVEL_1 = LOW,LEVEL_2 = MEDIUM,LEVEL_3 = MEDIUM,LEVEL_4 = LOW),

 CELLS_PER_OBJECT = 16

);

Or, in SSMS Object Explorer, I can right-click on the Indexes node under the
KeyGeographicLocation table and choose New Index. The New Index dialog box opens, as
shown in Figure 3-9.

CREATE SPATIAL INDEX [IXS_KeyGeographicLocation_KeyGeographicLocation]

ON [dbo].[KeyGeographicLocation]

(

 [KeyGeographicLocation]

)

USING GEOGRAPHY_GRID

WITH

(

 GRIDS =(LEVEL_1 = LOW,LEVEL_2 = MEDIUM,LEVEL_3 = MEDIUM,LEVEL_4 = LOW),

 CELLS_PER_OBJECT = 16

);
6/30/2008 2:09:47 PM

112

C03625587.indd 11
Introducing SQL Server 2008

FIGURE 3-9 New Index and Select Columns dialog boxes

Figure 3-9 also shows that when choosing a spatial index type, the column selection is lim-
ited to only spatial data type columns; columns of other data types are disabled.

Figure 3-10 shows how to set the special spatial index options, such as grid densities and cells
per object.
FIGURE 3-10 New index spatial options

2 6/30/2008 2:09:48 PM

C03625587.indd 113
Chapter 3 Type System 113

Keep in mind that because I chose a tessellation for GEOGRAPHY, the bounding box features
are disabled. If I had been working with a GEOMETRY data type instead, I would choose
Geometry Grid as the tessellation scheme, and the bounding box options would be enabled.

Spatial in the World

All of the examples shown so far in this section have been for the GEOMETRY data type,
so I thought a good way to round out this chapter is to see some practical use of the
GEOGRAPHY data type. I have loaded several sets of GEOGRAPHY data into a database
called NewYorkCity, which contains the spatial data and related metadata for the roads and
an abridged set of key landmarks and locations in Manhattan. In this particular set of data,
roads, landmarks, and locations are represented as one or more shapes, so, for example,
Columbia University is actually spread over two rows of data, as shown by this query.

SELECT LandmarkID, Landmark.ToString() AS LandmarkText, Name

FROM dbo.LANDMARK

WHERE NAME = ‘Columbia University’

This SELECT statement returns the following data.

LandmarkID LandmarkText Name

36 POLYGON
((-73.960162 40.808155,
-73.961079 40.806824,
-73.963956 40.808001999999995,
-73.962054999999992 40.810631,
-73.959223 40.809402999999996,
-73.95966 40.808794999999996,
-73.960162 40.808155))

Columbia University

352 POLYGON
((-73.961079 40.806824,
-73.961603 40.806166999999995,
-73.96204 40.805558999999995,
-73.964894 40.806754,
-73.964392 40.807410999999995,
-73.963956 40.808001999999995,
-73.961079 40.806824))

Columbia University

So what can we do with this data? First, let’s see how big the university actually is.

SELECT LandmarkID, Landmark.ToString() AS LandmarkText, Name

FROM dbo.LANDMARK

WHERE NAME = ‘Columbia University’

LandmarkID LandmarkText Name
SELECT SUM(Landmark.STArea()) AS LandmarkArea

FROM dbo.LANDMARK

WHERE NAME = ‘Columbia University’

SELECT SUM(Landmark.STArea()) AS LandmarkArea

FROM dbo.LANDMARK

WHERE NAME = ‘Columbia University’

6/30/2008 2:09:48 PM

114

C03625587.indd 114
Introducing SQL Server 2008

This query returns a value of 49441.0036718398 (square meters). Perhaps we want to see
what other landmarks are within a half mile of the university.

;WITH Columbia AS

(SELECT *

 FROM dbo.LANDMARK

 WHERE NAME = ‘Columbia University’

)

SELECT L.Name, MIN(L.Landmark.STDistance(C.Landmark)) AS Distance

FROM dbo.Landmark AS L

 INNER JOIN Columbia AS C

 ON L.Landmark.STDistance(C.Landmark) <= 804 -- 804 meters = ~1/2 mile

 AND L.Name != C.Name

GROUP BY L.Name

ORDER BY MIN(L.Landmark.STDistance(C.Landmark))

This returns the following results.

Name Distance

Barnard College 0

Morningside Park 84.6680452663973

Riverside Park 98.5865762586118

Hudson River 216.701882646377

Central Park 289.377374567307

The Reservoir 551.437153705882

Harlem Mere 651.499219450634

The Mt Sinai Medical Center 785.846014446101

Looks like I’ll be heading over to Morningside Park today.

Now, a quick quiz: In the following two statements, will the resulting GEOGRAPHY shapes be
the same or different? How do the Parse and STGeomFromText static GEOGRAPHY methods
differ?

DECLARE @Columbia1 GEOGRAPHY =

GEOGRAPHY::STGeomFromText(‘POLYGON ((-73.960162 40.808155,

-73.961079 40.806824, -73.963956 40.808001999999995,

-73.962054999999992 40.810631, -73.959223 40.809402999999996,

-73.95966 40.808794999999996, -73.960162 40.808155))’, 4236)

DECLARE @Columbia1 GEOGRAPHY =

;WITH Columbia AS

(SELECT *

 FROM dbo.LANDMARK

 WHERE NAME = ‘Columbia University’

)

SELECT L.Name, MIN(L.Landmark.STDistance(C.Landmark)) AS Distance

FROM dbo.Landmark AS L

 INNER JOIN Columbia AS C

 ON L.Landmark.STDistance(C.Landmark) <= 804 -- 804 meters = ~1/2 mile

 AND L.Name != C.Name

GROUP BY L.Name

ORDER BY MIN(L.Landmark.STDistance(C.Landmark))

Name Distance

DECLARE @Columbia1 GEOGRAPHY =

GEOGRAPHY::STGeomFromText(‘POLYGON ((-73.960162 40.808155,

-73.961079 40.806824, -73.963956 40.808001999999995,

-73.962054999999992 40.810631, -73.959223 40.809402999999996,

-73.95966 40.808794999999996, -73.960162 40.808155))’, 4236)

DECLARE @Columbia1 GEOGRAPHY =
GEOGRAPHY::Parse(‘POLYGON ((-73.960162 40.808155,

-73.961079 40.806824, -73.963956 40.808001999999995,

-73.962054999999992 40.810631, -73.959223 40.809402999999996,

-73.95966 40.808794999999996, -73.960162 40.808155))’)

GEOGRAPHY::Parse(‘POLYGON ((-73.960162 40.808155,

-73.961079 40.806824, -73.963956 40.808001999999995,

-73.962054999999992 40.810631, -73.959223 40.809402999999996,

-73.95966 40.808794999999996, -73.960162 40.808155))’)

6/30/2008 2:09:48 PM

C03625587.indd
Chapter 3 Type System 115

For the fi rst question, if you said the shapes are the same, then you are correct. Unlike
GEOMETRY shapes, GEOGRAPHY shapes require a valid spatial reference identifi er (SRID).
Parse and STGeomFromText differ only in that STGeomFromText requires an SRID, where-
as Parse assumes an SRID of 4326 (the default spatial reference system known by the
name World Geodetic System 1984), which happens to use the meter as its base unit of
measurement.

Because SRID determines the base unit of measurement, type of spatial model, and the el-
lipsoid used for the fl at-earth or round-earth mapping, you can only compare shapes with
the same SRID. To determine the SRID of a shape, use the STSrid property of your shape, for
example:

SELECT @Columbia1.STSrid

Also note that if you used the wrong SRID when loading your data, you can change the SRID
of your data by assigning the STSrid property the correct value, as shown here:

UPDATE Road SET Road.STSrid = 4267

As much as this section may have shown you about the new spatial data types, it has only
scratched the surface of the technology and possible uses.

XML Data Type

SQL Server 2005 introduced XML as a fi rst-class data type. SQL Server 2008 extends the XML
data type abilities in both schema validation support and XQuery capabilities.

XML Schema Validation Enhancements

On the schema validation front, there are three new features that need to be discussed: lax
validation, lists and unions, and date and time data.

Lax Validation support

I have been anxiously awaiting lax validation support since the XML data type was intro-

SELECT @Columbia1.STSrid

UPDATE Road SET Road.STSrid = 4267
duced in SQL Server 2005. Lax validation gives you the ability to strongly type those parts of
your XML data that need to be strongly typed, while allowing you to have portions that are
weakly typed. Usually you will have a majority of your schema that is strongly typed and only
a small part that allows for any type.

 115 6/30/2008 2:09:49 PM

C03625587
116 Introducing SQL Server 2008

Note The examples and demonstration in this section focus on lax validation with XML ele-
ments but could also be implemented for attributes.

Let’s start by defi ning the following schema collection using skip validation:

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##any” processContents=”skip”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’

This schema collection states that there must be a Name element under the Product element,
which can optionally be followed by any number of elements, regardless of namespace, none
of which will be validated (because of the skip validation). The following XML would be valid
using this schema.

DECLARE @X XML (xsProductOrder) =

‘<Products>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##any” processContents=”skip”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’

DECLARE @X XML (xsProductOrder) =

‘<Products>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />
 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

 </Product>

</Products>’

 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

 </Product>

</Products>’

.indd 116 6/30/2008 2:09:49 PM

C03625587.indd 117
Chapter 3 Type System 117

The namespace of the Any element can be a whitespace separated list of uniform resource
identifi ers (URIs). The following special values can also be used:

Namespace Meaning

##any XML from any namespace is valid (default). Cannot be combined with
other namespaces.

##other XML from a qualifi ed namespace other than the target namespace of the
type being defi ned. Cannot be combined with other namespaces.

##targetNamespace XML from the target namespace. Can be included in the whitespace
separated list.

##local XML not declared in a namespace (unqualifi ed). Can be included in the
whitespace separated list.

To better understand these other namespace options, let’s look at one more example, this
time using lax validation:

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’

The elements of this schema are now defi ned to be part of the http://debetta.com/xml
/products/namespace. The Any element, however, must be from a different namespace, so
although this would be valid:

Namespace Meaning

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’
DECLARE @X XML (xsProductOrder) =

‘<Products xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

6/30/2008 2:09:49 PM

118

C03625587.indd 118
Introducing SQL Server 2008

 <Name>LL Touring Frame - Blue, 58</Name>

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 </Product>

</Products>’

This XML assignment will not work:

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />

 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

 </Product>

</Products>’

To fi x the problem, we need to defi ne and use a second namespace for the Order element,
because the Any element must be from some other namespace, as shown here:

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns:O=”http://debetta.com/xml/orders/”

 xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <O:Order OrderID=”51823” />

 <O:Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <O:Order OrderID=”51120” />

 <O:Order OrderID=”51711” />

 <Name>LL Touring Frame - Blue, 58</Name>

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 </Product>

</Products>’

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />

 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

 </Product>

</Products>’

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns:O=”http://debetta.com/xml/orders/”

 xmlns=”http://debetta.com/xml/products/”>

 <Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <O:Order OrderID=”51823” />

 <O:Order OrderID=”51875” />

 </Product>

 <Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <O:Order OrderID=”51120” />

 <O:Order OrderID=”51711” />
 <O:Order OrderID=”51758” />

 <O:Order OrderID=”51799” />

 <O:Order OrderID=”51856” />

 </Product>

</Products>’

 <O:Order OrderID=”51758” />

 <O:Order OrderID=”51799” />

 <O:Order OrderID=”51856” />

 </Product>

</Products>’

6/30/2008 2:09:49 PM

C03625587.indd 119
Chapter 3 Type System 119

Finally, because the schema is doing lax validation on the Any element, if it fi nds the schema
information, it will validate it; otherwise, it will not. If we had used the following schema in-
stead, the XML assignment immediately above would fail because Order is now defi ned in
another schema, so it can now be checked. And it requires an OrderNum attribute, not an
OrderID attribute.

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/orders/”

 targetNamespace=”http://debetta.com/xml/orders/”>

 <xs:element name=”Order”>

 <xs:complexType>

 <xs:attribute name=”OrderNum” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

</xs:schema>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:import namespace=”http://debetta.com/xml/orders/” />

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort”

 use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/orders/”

 targetNamespace=”http://debetta.com/xml/orders/”>

 <xs:element name=”Order”>

 <xs:complexType>

 <xs:attribute name=”OrderNum” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

</xs:schema>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:import namespace=”http://debetta.com/xml/orders/” />

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort”

 use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>’
Union and List Type Improvements

In SQL Server 2005, you could defi ne a list as a type and use it to limit the valid values for an
element or attribute, but it could only be a single list of items. What if you wanted to instead
have two different lists? Well, in SQL Server 2005, you would have to defi ne each one sepa-
rately, and this implementation was not very fl exible. In SQL Server 2008, however, you can

6/30/2008 2:09:49 PM

120

C03625587.indd 120
Introducing SQL Server 2008

defi ne a union of lists. In this example, the element ProductType can either be Inventory and/
or DirectShip or it can be Electronic and/or Physical.

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/orders/”

 targetNamespace=”http://debetta.com/xml/orders/”>

 <xs:element name=”Order”>

 <xs:complexType>

 <xs:attribute name=”OrderID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

</xs:schema>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:import namespace=”http://debetta.com/xml/orders/” />

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:element ref=”ProductType” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort”

 use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name=”ProductType”>

 <xs:simpleType>

 <xs:union>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

CREATE XML SCHEMA COLLECTION xsProductOrder

AS

‘<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/orders/”

 targetNamespace=”http://debetta.com/xml/orders/”>

 <xs:element name=”Order”>

 <xs:complexType>

 <xs:attribute name=”OrderID” type=”xs:unsignedShort” use=”required” />

 </xs:complexType>

 </xs:element>

</xs:schema>

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/xml/products/”

 targetNamespace=”http://debetta.com/xml/products/”>

 <xs:import namespace=”http://debetta.com/xml/orders/” />

 <xs:element name=”Products”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Product”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Name” type=”xs:string” />

 <xs:element ref=”ProductType” />

 <xs:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xs:sequence>

 <xs:attribute name=”ProductID” type=”xs:unsignedShort”

 use=”required” />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name=”ProductType”>

 <xs:simpleType>

 <xs:union>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”Inventory”/>

 <xs:enumeration value=”DirectShip”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <xs:enumeration value=”Inventory”/>

 <xs:enumeration value=”DirectShip”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

6/30/2008 2:09:50 PM

C03625587.indd 121
Chapter 3 Type System 121

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

 <xs:enumeration value=”Electronic”/>

 <xs:enumeration value=”Physical”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 </xs:element>

</xs:schema>’

This declaration is therefore valid:

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns:O=”http://debetta.com/xml/orders/”

 xmlns=”http://debetta.com/xml/products/”>

<Product ProductID=”897”>

 <Name>Cycle Racer Simulation Software</Name>

 <ProductType>Physical Electronic</ProductType>

 <O:Order OrderID=”51823” />

 <O:Order OrderID=”51875” />

</Product>

<Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <ProductType>Inventory</ProductType>

 <O:Order OrderID=”51120” />

 <O:Order OrderID=”51711” />

 <O:Order OrderID=”51758” />

 <O:Order OrderID=”51799” />

 <O:Order OrderID=”51856” />

</Product>

</Products>’

There are methods for achieving similar results in SQL Server 2005, but they are more cum-
bersome and require defi ning each list as a separate type.

DateTime, Date, and Time Validation

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

 <xs:enumeration value=”Electronic”/>

 <xs:enumeration value=”Physical”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 </xs:element>

</xs:schema>’

DECLARE @X XML (xsProductOrder) =

‘<Products xmlns:O=”http://debetta.com/xml/orders/”

 xmlns=”http://debetta.com/xml/products/”>

<Product ProductID=”897”>

 <Name>Cycle Racer Simulation Software</Name>

 <ProductType>Physical Electronic</ProductType>

 <O:Order OrderID=”51823” />

 <O:Order OrderID=”51875” />

</Product>

<Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <ProductType>Inventory</ProductType>

 <O:Order OrderID=”51120” />

 <O:Order OrderID=”51711” />

 <O:Order OrderID=”51758” />

 <O:Order OrderID=”51799” />

 <O:Order OrderID=”51856” />

</Product>

</Products>’
Although the XML schema specifi cation states that time zone information is optional, SQL
Server 2005 requires it. SQL Server 2008 removes this restriction to better comply with the
specifi cation. Additionally, SQL Server 2005 would convert the time zone to Coordinated
Universal Time (UTC). The following example shows such a conversion from SQL Server 2005:

6/30/2008 2:09:50 PM

C03625587
122 Introducing SQL Server 2008

CREATE XML SCHEMA COLLECTION MySampleCollection AS ‘

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/”

 targetNamespace=”http://debetta.com/”>

 <xs:element name=”OrderDate” type=”xs:dateTime”/>

</xs:schema>’

GO

DECLARE @x XML(MySampleCollection)

SET @x =

 ‘<OrderDate xmlns=”http://debetta.com/”>1999-05-31T13:20:00-05:00</OrderDate>’

SELECT @x

This would return the following result:

<OrderDate xmlns=”http://debetta.com/”>1999-05-31T18:20:00Z</OrderDate>

SQL Server 2008, however, preserves time zone information, so no conversions occur. In SQL
Server 2008, that same script would return the following:

<OrderDate xmlns=”http://debetta.com/”>1999-05-31T13:20:00-05:00</OrderDate>

SQL Server 2008 does add a restriction to date data in that the year must now range from 1
to 9999, whereas in SQL Server 2005, it could range from -9999 to 9999. However, time data
now has 100 nanosecond precision, far greater than that available in SQL Server 2005.

Note When upgrading from SQL Server 2005 to 2008, date, time, and dateTime types can be
affected. For more information, see the “Upgrading Typed XML from SQL Server 2005 to SQL
Server 2008” section in the “Typed XML Compared to Untyped XML” topic in SQL Server 2008
Books Online.

XQuery

Three new features of note have been added to XQuery in SQL Server 2008: new functions,
variable assignment, and enhanced relational data binding.

CREATE XML SCHEMA COLLECTION MySampleCollection AS ‘

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://debetta.com/”

 targetNamespace=”http://debetta.com/”>

 <xs:element name=”OrderDate” type=”xs:dateTime”/>

</xs:schema>’

GO

DECLARE @x XML(MySampleCollection)

SET @x =

 ‘<OrderDate xmlns=”http://debetta.com/”>1999-05-31T13:20:00-05:00</OrderDate>’

SELECT @x

<OrderDate xmlns=”http://debetta.com/”>1999-05-31T18:20:00Z</OrderDate>

<OrderDate xmlns=”http://debetta.com/”>1999-05-31T13:20:00-05:00</OrderDate>
Changing Case

Two new functions have been added to the XQuery repertoire: fn:upper-case() and fn:lower-
case(). As you may know, XML is case sensitive, so having these case-changing functions will
certainly be of use.

.indd 122 6/30/2008 2:09:50 PM

C03625587.indd 123
Chapter 3 Type System 123

Let Clause

FLWOR is an acronym for the XQuery clauses for, let, where, order by, and return. SQL Server
2005 supported all but the let clause; SQL Server 2008 adds support for let. The let clause is a
simple variable [declaration and] assignment. This example uses let to calculate a count of the
Order nodes:

DECLARE @x XML =

‘<Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

</Product>

<Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />

 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

</Product>’

SELECT @x.query(

‘<Products>

{

for $order in /Product

let $count :=count($order/Order)

order by $count

return

<Product>

{$order/Name}

<OrderCount>{$count}</OrderCount>

</Product>

}

</Products>’)

In this example, the let clause is executed twice, once for each Product. You could also have
implemented the following XQuery to produce the same results:

SELECT @x.query(

‘<Products>

{

for $order in /Product

return

<Product>

DECLARE @x XML =

‘<Product ProductID=”897”>

 <Name>LL Touring Frame - Blue, 58</Name>

 <Order OrderID=”51823” />

 <Order OrderID=”51875” />

</Product>

<Product ProductID=”942” >

 <Name>ML Mountain Frame-W - Silver, 38</Name>

 <Order OrderID=”51120” />

 <Order OrderID=”51711” />

 <Order OrderID=”51758” />

 <Order OrderID=”51799” />

 <Order OrderID=”51856” />

</Product>’

SELECT @x.query(

‘<Products>

{

for $order in /Product

let $count :=count($order/Order)

order by $count

return

<Product>

{$order/Name}

<OrderCount>{$count}</OrderCount>

</Product>

}

</Products>’)

SELECT @x.query(

‘<Products>

{

for $order in /Product

return

<Product>
{$order/Name}

<OrderCount>{count($order/Order)}</OrderCount>

</Product>

}

</Products>’)

{$order/Name}

<OrderCount>{count($order/Order)}</OrderCount>

</Product>

}

</Products>’)

6/30/2008 2:09:50 PM

C03625587
124 Introducing SQL Server 2008

Although both of the queries return the same results, as the expression gets more compli-
cated, or if the value needs to be used multiple times, it is advantageous to use a variable
assigned via the let clause than to embed a more complicated expression or to repeat an
expression.

Note The let clause cannot be used with constructed XML elements.

XML Data Manipulation Language

Yet another great new ability for XML in SQL Server 2008 is using the sql:column and sql:vari-
able in modify method to be an XML construct. In SQL Server 2005, you could use these two
functions in XQuery data manipulation language (DML), but they could only represent data
and could not be used to insert one XML variable into another XML variable (a problem that
I had to deal with on several occasions). To achieve this result, a little shred-and-recompose
methodology was used to build the combined XML. Although this solution works, it requires
that you fi rst shred the XML data using the nodes, values, and query methods of the XML
data type and then recompose the now relational form of the data back into XML. Here is an
example of one such solution.

DECLARE @x1 XML =’

<items>

 <item type=”dynamic” id=”a”/>

 <item type=”static” id=”b”>

 <subitems>

 <subitem id=”1” />

 <subitem id=”2” />

 <subitem id=”3” />

 </subitems>

 </item>

</items>’;

DECLARE @x2 XML = ‘

<subitems>

 <subitem id=”4” />

 <subitem id=”5” />

</subitems>’;

SELECT @x1 =

(SELECT

 items.itemXML.value(‘@type’, ‘NVARCHAR(255)’) AS [@type],

 items.itemXML.value(‘@id’, ‘NVARCHAR(5)’) AS [@id],

 items.itemXML.query(‘subitems’) AS [*],

DECLARE @x1 XML =’

<items>

 <item type=”dynamic” id=”a”/>

 <item type=”static” id=”b”>

 <subitems>

 <subitem id=”1” />

 <subitem id=”2” />

 <subitem id=”3” />

 </subitems>

 </item>

</items>’;

DECLARE @x2 XML = ‘

<subitems>

 <subitem id=”4” />

 <subitem id=”5” />

</subitems>’;

SELECT @x1 =

(SELECT

 items.itemXML.value(‘@type’, ‘NVARCHAR(255)’) AS [@type],

 items.itemXML.value(‘@id’, ‘NVARCHAR(5)’) AS [@id],

 items.itemXML.query(‘subitems’) AS [*],
 CASE items.itemXML.value(‘./@type’, ‘VARCHAR(255)’)

 WHEN ‘dynamic’ THEN @x2

 END AS [*]

FROM @x1.nodes(‘/items/item’) AS items(itemXML)

FOR XML PATH(‘item’), ROOT(‘items’), TYPE);

 CASE items.itemXML.value(‘./@type’, ‘VARCHAR(255)’)

 WHEN ‘dynamic’ THEN @x2

 END AS [*]

FROM @x1.nodes(‘/items/item’) AS items(itemXML)

FOR XML PATH(‘item’), ROOT(‘items’), TYPE);

.indd 124 6/30/2008 2:09:51 PM

C03625587.indd
Chapter 3 Type System 125

In SQL Server 2008, you have a much better path to take, for now you can simply update
the XML data using the update method of the XML data type and add the XML in the sec-
ond variable to the fi rst variable. The biggest benefi t here is that the XML data is updated in
place, so when adding a small chunk of XML to a large document, much less work needs to
be done. Thus, it will be faster than the shred-and-recompose method. The new solution is
shown here:

DECLARE @x1 XML =’

<items>

 <item type=”dynamic” id=”a”/>

 <item type=”static” id=”b”>

 <subitems>

 <subitem id=”1” />

 <subitem id=”2” />

 <subitem id=”3” />

 </subitems>

 </item>

</items>’;

DECLARE @x2 XML = ‘

<subitems>

 <subitem id=”4” />

 <subitem id=”5” />

</subitems>’;

SET @x1.modify

(

 ‘insert sql:variable(“@x2”) as first into (/items/item[@type=”dynamic”])[1]’

);

Now isn’t that so much nicer?

New Date and Time Data Types

SQL Server 2008 has extended the type system to include four new data and time data types:
DATE, TIME, DATETIME2, and DATETIMEOFFSET. These new date and time data types offer
higher precision, large year range, and time zone awareness and preservation and therefore
more fl exibility when defi ning your data domain. The following table gives a summary of the
new and existing date and time data types:

Primary Literal Storage

DECLARE @x1 XML =’

<items>

 <item type=”dynamic” id=”a”/>

 <item type=”static” id=”b”>

 <subitems>

 <subitem id=”1” />

 <subitem id=”2” />

 <subitem id=”3” />

 </subitems>

 </item>

</items>’;

DECLARE @x2 XML = ‘

<subitems>

 <subitem id=”4” />

 <subitem id=”5” />

</subitems>’;

SET @x1.modify

(

 ‘insert sql:variable(“@x2”) as first into (/items/item[@type=”dynamic”])[1]’

);

Primary Literal Storage
Data Type String Format Range Accuracy Size (bytes)

TIME [(0~7)] hh:mm:ss
[nnnnnnn]

00:00:00.0000000
through
23:59:59.9999999

100 nano-
seconds

3 to 5

DATE YYYY-MM-DD 0001-01-01 through
9999-12-31

1 day 3

Data Type String Format Range Accuracy Size (bytes)

 125 6/30/2008 2:09:51 PM

126

C03625587.indd
Introducing SQL Server 2008

Data Type

Primary Literal

String Format Range Accuracy

Storage

Size (bytes)

SMALLDATETIME YYYY-MM-DD hh:
mm:ss

1900-01-01 through
2079-06-06

1 minute 4

DATETIME YYYY-MM-DD hh:
mm:ss[.nnn]

1753-01-01 through
9999-12-31

0.00333
second

8

DATETIME2[(0~7)] YYYY-MM-DD hh:
mm:ss[.nnnnnnn]

0001-01-01
00:00:00.0000000
through
9999-12-31
23:59:59.9999999

100 nano-
seconds

6 to 8

DATETIMEOFFSET[(0~7)]

(Stores Time Zone Offset)

YYYY-MM-DD hh:
mm:ss[.nnnnnnn]
[+|-]hh:mm

0001-01-01
00:00:00.0000000
through
9999-12-31
23:59:59.9999999
(in UTC)

100 nano-
seconds

8 to 10

This table shows that the existing DATETIME and SMALLDATETIME data types haven’t
changed. The new date data types, however, now support a date range from 0001-01-01
to 9999-12-31. And the new time data types have precision up to 100 nanoseconds—that’s
33,333 times more accuracy.

In addition, time data type can specify the precision, and, to support his feature, the three
new data types that support time have an optional precision parameter. Take a look at the
following code:

DECLARE

 @t0 TIME(0) = ‘12:34:56.1234567’,

 @t1 TIME(1) = ‘12:34:56.1234567’,

 @t2 TIME(2) = ‘12:34:56.1234567’,

 @t3 TIME(3) = ‘12:34:56.1234567’,

 @t4 TIME(4) = ‘12:34:56.1234567’,

 @t5 TIME(5) = ‘12:34:56.1234567’,

 @t6 TIME(6) = ‘12:34:56.1234567’,

 @t7 TIME(7) = ‘12:34:56.1234567’,

 @t TIME = ‘12:34:56.1234567’

SELECT

 @t0 AS T0,

 @t1 AS T1,

 @t2 AS T2,

Data Type

Primary Literal

String Format Range Accuracy

Storage

Size (bytes)

DECLARE

 @t0 TIME(0) = ‘12:34:56.1234567’,

 @t1 TIME(1) = ‘12:34:56.1234567’,

 @t2 TIME(2) = ‘12:34:56.1234567’,

 @t3 TIME(3) = ‘12:34:56.1234567’,

 @t4 TIME(4) = ‘12:34:56.1234567’,

 @t5 TIME(5) = ‘12:34:56.1234567’,

 @t6 TIME(6) = ‘12:34:56.1234567’,

 @t7 TIME(7) = ‘12:34:56.1234567’,

 @t TIME = ‘12:34:56.1234567’

SELECT

 @t0 AS T0,

 @t1 AS T1,

 @t2 AS T2,
 @t3 AS T3,

 @t4 AS T4,

 @t5 AS T5,

 @t6 AS T6,

 @t7 AS T7,

 @t AS T

 @t3 AS T3,

 @t4 AS T4,

 @t5 AS T5,

 @t6 AS T6,

 @t7 AS T7,

 @t AS T

126 6/30/2008 2:09:51 PM

C03625587.indd 1
Chapter 3 Type System 127

Results of this query are shown in the following tables (results are split into two tables for
formatting purposes):

T0 T1 T2 T3 T4

12:34:56 12:34:56.1000000 12:34:56.1200000 12:34:56.1230000 12:34:56.1235000

T5 T6 T7 T

12:34:56.1234600 12:34:56.1234570 12:34:56.1234567 12:34:56.1234567

Note Not specifying a precision is equivalent to a precision of 7.

Because you can specify precision, the size of these data types can vary, from n bytes to n+2
bytes, where n is the smallest size the type can be (which depends on the specifi c type). For
example, for the TIME data type, n = 3. The following table shows how the precision affects
the size of the time data type.

Precision Size in bytes

0, 1, 2 n

3, 4 n+1

5, 6, 7 n+2

New Data and Time Functions and Functionality

With these new date and time data types comes some new functions and functionality. For
example, the DATEPART and DATENAME functions now support the following new datepart
argument values:

microsecond The number of seconds to six decimal places

nanosecond The number of seconds to seven decimal places, although nine are dis-
played (the last two are always 00)

TZoffset Signed time zone offset in minutes

ISO_WEEK Week number based on ISO 8601 standard where the fi rst day of the week
is Monday, and week one always contains the fi rst Thursday and contains from four to
seven days of that year (it can contain days from a previous year)

T0 T1 T2 T3 T4

T5 T6 T7 T

Precision Size in bytes
DATEADD and DATEDIFF can also use the microsecond and nanosecond for the datepart ar-
gument. DATEDIFF, however, still returns an INT data type, so if the difference is outside the
range of -2,147,483,648 to +2,147,483,647, it will raise an exception, as shown here:

27 6/30/2008 2:09:51 PM

128

C03625587.indd 128
Introducing SQL Server 2008

DECLARE

 @d1 DATETIME2 = ‘2001-01-01’,

 @d2 DATETIME2 = ‘2009-01-01’

SELECT DATEDIFF(nanosecond, @d1, @d2) AS Diff

This query results in the following exception:

Msg 535, Level 16, State 0, Line 4

The datediff function resulted in an overflow. The number of dateparts separating two

date/time instances is too large. Try to use datediff with a less precise datepart.

Similarly, DATEADD can only take an INT data type for the amount to add, so you are limited
to adding -2,147,483,648 to +2,147,483,647 of any datepart.

SWITCHOFFSET is another new function that is used to change the time zone of the input
value to a specifi ed new time zone; it can also be used to report the local DATETIME value of
the input DATETIMEOFFSET value.

DECLARE @d1 DATETIMEOFFSET = ‘2008-01-01 12:34:56.1234567-06:00’

SELECT

 @d1 AS DallasTime,

 SWITCHOFFSET(@d1, ‘+00:00’) AS LondonTime,

 SWITCHOFFSET(@d1, ‘-08:00’) AS RedmondTime

This query returns the following data:

DallasTime LondonTime RedmondTime

1/1/2008 12:34:56 PM -06:00 1/1/2008 6:34:56 PM +00:00 1/1/2008 10:34:56 AM -08:00

Using SWITCHOFFSET in conjunction with CAST or CONVERT can return the local time with-
out offset information. For example,

SELECT SYSDATETIME() AS [Dallas]

 , SYSDATETIMEOFFSET() AS [DallasWithOffset]

DECLARE

 @d1 DATETIME2 = ‘2001-01-01’,

 @d2 DATETIME2 = ‘2009-01-01’

SELECT DATEDIFF(nanosecond, @d1, @d2) AS Diff

Msg 535, Level 16, State 0, Line 4

The datediff function resulted in an overflow. The number of dateparts separating two

date/time instances is too large. Try to use datediff with a less precise datepart.

DECLARE @d1 DATETIMEOFFSET = ‘2008-01-01 12:34:56.1234567-06:00’

SELECT

 @d1 AS DallasTime,

 SWITCHOFFSET(@d1, ‘+00:00’) AS LondonTime,

 SWITCHOFFSET(@d1, ‘-08:00’) AS RedmondTime

DallasTime LondonTime RedmondTime

SELECT SYSDATETIME() AS [Dallas]

 , SYSDATETIMEOFFSET() AS [DallasWithOffset]
 , CAST(SWITCHOFFSET(SYSDATETIMEOFFSET(), ‘-08:00’) AS DATETIME2) AS [Seattle]

 , SWITCHOFFSET(SYSDATETIMEOFFSET(), ‘-08:00’) AS [SeattleWithOffset]

This query returns the following data:

 , CAST(SWITCHOFFSET(SYSDATETIMEOFFSET(), ‘-08:00’) AS DATETIME2) AS [Seattle]

 , SWITCHOFFSET(SYSDATETIMEOFFSET(), ‘-08:00’) AS [SeattleWithOffset]

6/30/2008 2:09:52 PM

C03625587.indd 129
Chapter 3 Type System 129

Dallas DallasWithOffset Seattle SeattleWithOffset

2008-03-04
16:03:00.777

3/4/2008
4:03:00 PM -06:00

2008-03-04
14:03:00.777

3/4/2008
2:03:00 PM -08:00

Because I am running this code on a machine in GMT -06:00, the time in Seattle should be
and is two hours earlier than the Dallas times. The TODATETIMEOFFSET function can also
return a DATETIMEOFFSET value but works differently from SWITCHOFFSET. Examine the fol-
lowing code and results.

SELECT

 SWITCHOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’) AS [Seattle1]

 , TODATETIMEOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’) AS [Seattle2]

This results in the following:

SeattleWithOffset1 SeattleWithOffset2

3/4/2008 2:16:17 PM -08:00 3/4/2008 4:16:17 PM -08:00

Both functions return a value of DATETIMEOFFSET data type, and although the same input
was (apparently) used for both, their return values still differ. As shown earlier in this section,
SWITCHOFFSET moved the time zone to one that is two hours earlier. TODATETIMEOFFSET
does not shift time zones. It takes DATETIME2 data as its input and does not change the
time zone of the input; rather, it sets the new time zone on the DATETIME2 input (which has
no time zone). The DATETIMEOFFSET value that is being input into the TODATETIMEOFFSET
function is actually being implicitly converted to DATETIME2 before setting the time zone.
That means, in this following query, all three of these returned values would be the same
(3/4/2008 4:16:17 PM -08:00).

SELECT

 TODATETIMEOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’)

 , TODATETIMEOFFSET(‘2008-03-04 16:16:17.162’, ‘-08:00’)

 , TODATETIMEOFFSET(CAST(‘2008-03-04 16:16:17.162 -06:00’ as DATETIME2), ‘-08:00’)

Here are a few more notable functions of which you should be aware:

Function Description Example Result

SYSDATETIME Current date and time as DATETIME2 data 2008-03-04 15:48:47.610

Dallas DallasWithOffset Seattle SeattleWithOffset

SELECT

 SWITCHOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’) AS [Seattle1]

 , TODATETIMEOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’) AS [Seattle2]

SeattleWithOffset1 SeattleWithOffset2

SELECT

 TODATETIMEOFFSET(‘2008-03-04 16:16:17.162 -06:00’, ‘-08:00’)

 , TODATETIMEOFFSET(‘2008-03-04 16:16:17.162’, ‘-08:00’)

 , TODATETIMEOFFSET(CAST(‘2008-03-04 16:16:17.162 -06:00’ as DATETIME2), ‘-08:00’)

Function Description Example Result
type

SYSDATETIMEOFFSET Current date and time as DATETIME2 in UTC 3/4/2008 3:48:47 PM -06:00

SYSUTCDATETIME Current date and time as DATETIMEOFFSET
using system time zone

2008-03-04 21:48:47.610

6/30/2008 2:09:52 PM

C03625587
130 Introducing SQL Server 2008

Again, because I happened to be in GMT -06:00 when I executed these func-
tions, SYSDATETIME returned a value six hours earlier than SYSUTCDATETIME.
SYSDATETIMEOFFSET returned the local time (same as SYSDATETIME) but with the time zone
offset (in this case, -06:00).

More Info There are other functions for which you can fi nd plenty of documentation in SQL
Server 2008 Books Online under the topic “Date and Time Data Types and Functions (Transact-
SQL).”

Notes on Conversion

When implicitly or explicitly converting DATE, TIME, SMALLDATETIME, DATETIME,
DATETIME2, or string literals in a valid DATE, TIME, or DATETIME format (without time zone)
to DATETIMEOFFSET, the resulting value always has a time zone of 00:00, as shown here (all
three return values are 3/4/2008 4:34:05 PM +00:00).

DECLARE @dt DATETIME = ‘2008-03-04 16:34:05’

DECLARE

 @dto1 DATETIMEOFFSET = @dt

 , @dto2 DATETIMEOFFSET = CAST(@dt AS DATETIMEOFFSET)

 , @dto3 DATETIMEOFFSET = TODATETIMEOFFSET(@dt, ‘+00:00’)

SELECT @dto1, @dto2, @dto3

When using CONVERT to convert from DATETIMEOFFSET to DATE, TIME, DATETIME2,
DATETIME, or SMALLDATETIME, specifying style 0 (or no style because 0 is the default) will
result in the date and time in the local format of the preserved time zone (this also applies to
using CAST). Using style 1, however, will result in UTC format. For example, examine the fol-
lowing query and results.

DECLARE @dto datetimeoffset = ‘2008-03-06 13:45:00.1234567 -06:00’

SELECT CAST(@dto As DATETIME2) AS DT2_Cast

 , CONVERT(DATETIME2, @dto) AS DT2_NoStyle

 , CONVERT(DATETIME2, @dto, 0) AS DT2_Style0

 , CONVERT(DATETIME2, @dto, 1) AS DT2_Style1

DT2_Cast DT2_NoStyle DT2_Style0 DT2_Style1

DECLARE @dt DATETIME = ‘2008-03-04 16:34:05’

DECLARE

 @dto1 DATETIMEOFFSET = @dt

 , @dto2 DATETIMEOFFSET = CAST(@dt AS DATETIMEOFFSET)

 , @dto3 DATETIMEOFFSET = TODATETIMEOFFSET(@dt, ‘+00:00’)

SELECT @dto1, @dto2, @dto3

DECLARE @dto datetimeoffset = ‘2008-03-06 13:45:00.1234567 -06:00’

SELECT CAST(@dto As DATETIME2) AS DT2_Cast

 , CONVERT(DATETIME2, @dto) AS DT2_NoStyle

 , CONVERT(DATETIME2, @dto, 0) AS DT2_Style0

 , CONVERT(DATETIME2, @dto, 1) AS DT2_Style1

DT2_Cast DT2_NoStyle DT2_Style0 DT2_Style1
2008-03-06
13:45:00.123

2008-03-06
13:45:00.123

2008-03-06
13:45:00.123

2008-03-06
19:45:00.123

Because the results using style 1 are being output in UTC, and because the input value is
GMT 06:00, a shift of six hours in the value results. The results seen here from using style 0

.indd 130 6/30/2008 2:09:52 PM

C03625587.indd
Chapter 3 Type System 131

and 1 apply only when converting from DATETIMEOFFSET to another date or time data type.
Using the CONVERT styles when converting date and time data to character data results
in the more familiar variety of date and time formats including various American National
Standards Institute (ANSI), international, Open Database Connectivity (ODBC) canonical, and
International Organization for Standardization (ISO) formats. See the Cast and Convert topic
in SQL Server 2008 Books Online for more details.

There is one last item of note when using CONVERT and style 1. Examine the following.

DECLARE @dto datetimeoffset = ‘2008-03-06 19:45:00.1234567 -06:00’

SELECT CONVERT(DATE, @dto, 1) AS DT2_Style1

What do you think the result will be? If you said ‘2008-03-07’, you are correct! The reason for
this behavior is the shift to UTC. If this had been converted to DATETIME2, the result would
have been ’2008-03-07 01:45:00.123’. So, when converting to just a date data type, we still
see the date change, even though the time is not part of the return value.

User-Defi ned Table Types and Table-Valued Parameters

User-Defi ned Table Type

You can now declare a type that represents a table structure. For example, suppose you fre-
quently need to use the following structure in your T-SQL code:

DECLARE @NewCustomer TABLE

(

 [CustomerID] int NULL,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

)

After repeating this code many times in a variety of stored procedures and user-de-
fi ned functions, you begin to wish for an easier way to make these declarations. And of
course, there is a better way—use a user-defi ned table type. Here is the defi nition of the
NewCustomer table:

DECLARE @dto datetimeoffset = ‘2008-03-06 19:45:00.1234567 -06:00’

SELECT CONVERT(DATE, @dto, 1) AS DT2_Style1

DECLARE @NewCustomer TABLE

(

 [CustomerID] int NULL,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

)

CREATE TYPE [dbo].[NewCustomer] AS TABLE

(

 [CustomerID] int NULL,

CREATE TYPE [dbo].[NewCustomer] AS TABLE

(

 [CustomerID] int NULL,

 131 6/30/2008 2:09:53 PM

C0362558
132 Introducing SQL Server 2008

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

)

Once you have defi ned the table type, you can simply use it when declaring variables and
parameters, as shown here:

DECLARE @NewCustomer AS [dbo].[NewCustomer]

This declaration is equivalent to the DECLARE @NewCustomer TABLE code found in the be-
ginning of this section without all the extra typing required for each subsequent declaration.

Now, of course, what would a new feature be without a few caveats? One of these is that you
cannot defi ne a column as a user-defi ned table type—that would be the equivalent of nest-
ing tables, which cannot be done. There are other things that are required when using user-
defi ned table types, such as:

Default values are not allowed in the table defi nition.

Primary Key columns must be on a persisted column that does not allow null values.

Check constraints cannot be done on nonpersisted computed columns.

Nonclustered indexes are not allowed. If, however, you create a (nonclustered) primary
key or unique constraint (both of which are allowed), you will be creating a nonclus-
tered index behind the scenes because SQL Server uses an index to enforce unique and
primary key constraints.

Note You cannot ALTER a user-defi ned table type. Once created, it must be dropped and re-
created to make any changes. This can become cumbersome if the user-defi ned table type has
been used as a parameter in a stored procedure or user-defi ned function, because it can now
also not be dropped. This means that you will need to do some planning instead of haphazardly
using user-defi ned table types.

Table-Valued Parameters

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

)

DECLARE @NewCustomer AS [dbo].[NewCustomer]
Once you have defi ned the necessary user-defi ned table types, you can then use them in
your T-SQL code, as variables (shown above) or as parameters, as shown here:

7.indd 132 6/30/2008 2:09:53 PM

C03625587.indd 133
Chapter 3 Type System 133

--A stored procedure with a TVP

CREATE PROCEDURE prCustomerInsertOrUpdate

 (@NewCustomer [dbo].[NewCustomer] READONLY)

AS

MERGE Customer AS c

USING @NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN TARGET NOT MATCHED THEN

 INSERT (FirstName, LastName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.EmailAddress, nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

GO

--Using the stored procedure

DECLARE @newcust [dbo].[NewCustomer]

INSERT INTO @newcust (CustomerID, Firstname, LastName, Email, Phone)

VALUES (NULL, ‘Peter’, ‘DeBetta’, ‘peterd@adventure-works.com’, ‘765-555-0191’)

EXEC prCustomerInsertOrUpdate @newcust

In this example, we have created a stored procedure that accepts a customer record as a
parameter and then uses the MERGE statement to either insert or update the record ac-
cordingly. You may have noticed that the parameter uses the READONLY keyword. This is a
requirement for table-valued parameters (TVPs), which means you cannot modify a table-
valued parameter using DML (which also means that it cannot be an OUTPUT parameter).

This static state of the parameter value does offer some benefi ts, though, such as no need
to acquire locks when initially populating from the client. They also do not cause statements
to recompile. And unlike other parameter types that may contain a set of data, TVPs are
strongly typed. Yes, XML can also be strongly typed, but strongly typed XML is generally less
effi cient to process when compared with the table-valued parameter.

Other advantages include:

Passing in XML, many parameter values, or a delimited parameter value (and splitting
it) requires more complicated code than the code that uses a table-valued parameter.

From client code, making multiple calls to a stored procedure with multiple parameters

--A stored procedure with a TVP

CREATE PROCEDURE prCustomerInsertOrUpdate

 (@NewCustomer [dbo].[NewCustomer] READONLY)

AS

MERGE Customer AS c

USING @NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN TARGET NOT MATCHED THEN

 INSERT (FirstName, LastName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.EmailAddress, nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

GO

--Using the stored procedure

DECLARE @newcust [dbo].[NewCustomer]

INSERT INTO @newcust (CustomerID, Firstname, LastName, Email, Phone)

VALUES (NULL, ‘Peter’, ‘DeBetta’, ‘peterd@adventure-works.com’, ‘765-555-0191’)

EXEC prCustomerInsertOrUpdate @newcust
is much less effi cient than sending all the data in a table-valued parameter in a single
call and using a set-based operation against all incoming rows.

However, TVPs do have some minor restrictions. For example, statistics are not maintained
for TVP columns. TVPs also have the same set of restrictions that table variables have,

6/30/2008 2:09:53 PM

C03625587
134 Introducing SQL Server 2008

such that you cannot SELECT INTO them, and you cannot use them with an INSERT EXEC
statement.

When sending one or a few rows to be used by a procedure or user-defi ned function, table-
valued parameters are a great choice and, with few exceptions, the best for performance. But
when are the best times to use a TVP versus other features such as BULK INSERT?

When calling from a remote client (middle tier or rich client), more often than not, using a
TVP is the best choice, with one exception: If you need to insert many, many rows, such as
tens of thousands of rows (this number is not exact and should be used as a guideline and
not a strict metric value) and you are directly inserting the data and not performing any
complex business logic, then you should consider using BULK INSERT instead of TVPs (al-
though the performance difference is minimal, even when inserting one hundred thousand
rows). Otherwise, use table-valued parameters.

More Info See SQL Server Books Online for more details about bulk loading data into SQL
Server.

Some performance benefi ts of TVPs include:

It can reduce the number of roundtrips to the server.

Potentially unbounded data can be sent in a TVP.

Streamed client-side interfaces increase its effi ciency.

Effi cient data transport—tabular data stream (TDS) layer has been optimized to
stream large amount of data or TVPs.

New client-side fl ags for specifying presorted/unique data. For example, if the cli-
ent data is already presorted, you can specify that the data is presorted through
SNAC/SQLClient interfaces, and when the server sees the data is presorted, it op-
timizes by not sorting this data again on the server side.

And I have to mention one last benefi t of using TVPs from a client: It’s easy! In the next sec-
tion, I’ll demonstrate using TVPs from both T-SQL and C# clients.

Table-Valued Parameters in Action

The fi rst thing that needs to be done is to set up a table, a table type, and a stored procedure
that will insert or update into the new table.
USE AdventureWorks;

GO

DROP TABLE [dbo].[Customer];

USE AdventureWorks;

GO

DROP TABLE [dbo].[Customer];

.indd 134 6/30/2008 2:09:53 PM

C03625587.indd 135
Chapter 3 Type System 135

DROP PROCEDURE prCustomerInsertOrUpdate;

DROP TYPE [dbo].[NewCustomer];

GO

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] int IDENTITY(1, 1) PRIMARY KEY,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

);

GO

SET IDENTITY_INSERT [dbo].[Customer] ON

INSERT INTO [dbo].[Customer] (CustomerID, FirstName, LastName, EmailAddress, Phone)

SELECT ContactID, FirstName, LastName, EmailAddress, Phone

FROM AdventureWorks.Person.Contact;

SET IDENTITY_INSERT [dbo].[Customer] OFF

GO

CREATE TYPE [dbo].[NewCustomer] AS TABLE

(

 [CustomerID] int NULL,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

);

GO

CREATE PROCEDURE prCustomerInsertOrUpdate

 (@NewCustomer [dbo].[NewCustomer] READONLY)

AS

MERGE Customer AS c

USING @NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN TARGET NOT MATCHED THEN

 INSERT (FirstName, LastName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.EmailAddress, nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

GO

DROP PROCEDURE prCustomerInsertOrUpdate;

DROP TYPE [dbo].[NewCustomer];

GO

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] int IDENTITY(1, 1) PRIMARY KEY,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

);

GO

SET IDENTITY_INSERT [dbo].[Customer] ON

INSERT INTO [dbo].[Customer] (CustomerID, FirstName, LastName, EmailAddress, Phone)

SELECT ContactID, FirstName, LastName, EmailAddress, Phone

FROM AdventureWorks.Person.Contact;

SET IDENTITY_INSERT [dbo].[Customer] OFF

GO

CREATE TYPE [dbo].[NewCustomer] AS TABLE

(

 [CustomerID] int NULL,

 [FirstName] varchar(50) NOT NULL,

 [LastName] varchar(50) NOT NULL,

 [EmailAddress] varchar(128) NULL,

 [Phone] varchar(20) NULL

);

GO

CREATE PROCEDURE prCustomerInsertOrUpdate

 (@NewCustomer [dbo].[NewCustomer] READONLY)

AS

MERGE Customer AS c

USING @NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN TARGET NOT MATCHED THEN

 INSERT (FirstName, LastName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.EmailAddress, nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

GO
Some of this code is a rehash of some code earlier in this section with some new code to
create and populate a sample target table. So how do you call the stored procedure from
T-SQL? You fi rst create a variable of the table type, add some rows to that variable, and then

6/30/2008 2:09:53 PM

136

C03625587.indd 136
Introducing SQL Server 2008

pass it into the stored procedure in the same way you would pass a scalar value, such as an
integer.

DECLARE @C AS [dbo].[NewCustomer];

INSERT INTO @C

VALUES

 (1, ‘Gustavo’, ‘Achong’, ‘gustavo.achong@adventure-works.com’, ‘398-555-0132’)

 , (NULL, ‘Peter’, ‘DeBetta’, ‘peterd@adventure-works.com’, ‘987-555-0191’);

EXEC prCustomerInsertOrUpdate @C;

SELECT *

FROM dbo.Customer

WHERE LastName IN (‘Achong’, ‘DeBetta’);

The last SELECT statement will return the following results, showing how one row was added
and one row was updated (Gustavo’s email was changed from gustavo0@adventure-works.
com).

CustomerID FirstName LastName EmailAddress Phone

1 Gustavo Achong gustavo.achong@adventure-works.com 398-555-0132

19978 Peter DeBetta peterd@adventure-works.com 987-555-0191

It’s just that simple. What about making the same call from a .NET client? I’ll let the code
speak for itself.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.SqlClient;

using System.Data;

using Microsoft.SqlServer.Server;

namespace TVPClient

{

 class Program

 {

 static void Main(string[] args)

 {

 using (SqlConnection connection = new SqlConnection())

 {

DECLARE @C AS [dbo].[NewCustomer];

INSERT INTO @C

VALUES

 (1, ‘Gustavo’, ‘Achong’, ‘gustavo.achong@adventure-works.com’, ‘398-555-0132’)

 , (NULL, ‘Peter’, ‘DeBetta’, ‘peterd@adventure-works.com’, ‘987-555-0191’);

EXEC prCustomerInsertOrUpdate @C;

SELECT *

FROM dbo.Customer

WHERE LastName IN (‘Achong’, ‘DeBetta’);

CustomerID FirstName LastName EmailAddress Phone

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.SqlClient;

using System.Data;

using Microsoft.SqlServer.Server;

namespace TVPClient

{

 class Program

 {

 static void Main(string[] args)

 {

 using (SqlConnection connection = new SqlConnection())

 {
 connection.ConnectionString = @”Data Source=(local);”

 + @“Initial Catalog=adventureworks; Integrated Security=SSPI;”;

 DataTable newCustomer = NewCustomer();

 SqlCommand insertPeople =

 new SqlCommand(“dbo.prCustomerInsertOrUpdate”, connection);

 insertPeople.CommandType = CommandType.StoredProcedure;

 connection.ConnectionString = @”Data Source=(local);”

 + @“Initial Catalog=adventureworks; Integrated Security=SSPI;”;

 DataTable newCustomer = NewCustomer();

 SqlCommand insertPeople =

 new SqlCommand(“dbo.prCustomerInsertOrUpdate”, connection);

 insertPeople.CommandType = CommandType.StoredProcedure;

6/30/2008 2:09:54 PM

C03625587.indd 137
Chapter 3 Type System 137

 SqlParameter tvpCust = insertPeople.CreateParameter();

 tvpCust.ParameterName = “@NewCustomer”;

 tvpCust.Direction = ParameterDirection.Input;

 tvpCust.SqlDbType = SqlDbType.Structured;

 tvpCust.Value = newCustomer;

 tvpCust.TypeName = “dbo.NewCustomer”;

 insertPeople.Parameters.Add(tvpCust);

 connection.Open();

 insertPeople.ExecuteNonQuery();

 }

 }

 private static DataTable NewCustomer()

 {

 DataTable dt = new DataTable(“NewCustomer”);

 dt.Columns.Add(“CustomerID”, System.Type.GetType(“System.Int32”));

 dt.Columns.Add(“FirstName”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“LastName”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“EmailAddress”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“Phone”, System.Type.GetType(“System.String”));

 dt.Rows.Add(CreateRow(dt, 19978, “Peter”, “DeBetta”,

 “peterd@adventure-works.com”, “987-555-0111”));

 dt.Rows.Add(CreateRow(dt, null, “Adam”, “Machanic”,

 “adama@adventure-works.com”, “789-555-0111”));

 return dt;

 }

 private static DataRow CreateRow(DataTable dt, Nullable<Int32> CustomerID,

 String FirstName, String LastName, String EmailAddress, String Phone)

 {

 DataRow dr = dt.NewRow();

 dr[“CustomerID”] = CustomerID == null? -1 : CustomerID;

 dr[“FirstName”] = FirstName;

 dr[“LastName”] = LastName;

 dr[“EmailAddress”] = EmailAddress;

 dr[“Phone”] = Phone;

 return dr;

 }

 }

}

The code in the NewCustomer and CreateRow static methods are simply creating and popu-
lating a DataTable. Looking at the static Main method, the only difference between this and a
call to a stored procedure with a scalar-value parameter is found in these three lines.

 SqlParameter tvpCust = insertPeople.CreateParameter();

 tvpCust.ParameterName = “@NewCustomer”;

 tvpCust.Direction = ParameterDirection.Input;

 tvpCust.SqlDbType = SqlDbType.Structured;

 tvpCust.Value = newCustomer;

 tvpCust.TypeName = “dbo.NewCustomer”;

 insertPeople.Parameters.Add(tvpCust);

 connection.Open();

 insertPeople.ExecuteNonQuery();

 }

 }

 private static DataTable NewCustomer()

 {

 DataTable dt = new DataTable(“NewCustomer”);

 dt.Columns.Add(“CustomerID”, System.Type.GetType(“System.Int32”));

 dt.Columns.Add(“FirstName”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“LastName”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“EmailAddress”, System.Type.GetType(“System.String”));

 dt.Columns.Add(“Phone”, System.Type.GetType(“System.String”));

 dt.Rows.Add(CreateRow(dt, 19978, “Peter”, “DeBetta”,

 “peterd@adventure-works.com”, “987-555-0111”));

 dt.Rows.Add(CreateRow(dt, null, “Adam”, “Machanic”,

 “adama@adventure-works.com”, “789-555-0111”));

 return dt;

 }

 private static DataRow CreateRow(DataTable dt, Nullable<Int32> CustomerID,

 String FirstName, String LastName, String EmailAddress, String Phone)

 {

 DataRow dr = dt.NewRow();

 dr[“CustomerID”] = CustomerID == null? -1 : CustomerID;

 dr[“FirstName”] = FirstName;

 dr[“LastName”] = LastName;

 dr[“EmailAddress”] = EmailAddress;

 dr[“Phone”] = Phone;

 return dr;

 }

 }

}

tvpCust.SqlDbType = SqlDbType.Structured;

tvpCust.Value = newCustomer;

tvpCust.TypeName = “dbo.NewCustomer”;

tvpCust.SqlDbType = SqlDbType.Structured;

tvpCust.Value = newCustomer;

tvpCust.TypeName = “dbo.NewCustomer”;

6/30/2008 2:09:54 PM

C036255
138 Introducing SQL Server 2008

SqlDbType.Structured tells the parameter it will be sending a table-valued parameter. The
TypeName specifi es the table type name. If it is incorrectly specifi ed, you will get an excep-
tion. And the value of the parameter is actually a DataTable. In addition to a DataTable, you
can also pass a List<SqlDataRecord> or a DataReader.

So when you now execute this T-SQL code.

SELECT *

FROM dbo.Customer

WHERE LastName IN (‘DeBetta’, ‘Machanic’)

You will see these results.

CustomerID FirstName LastName EmailAddress Phone

19978 Peter DeBetta peterd@adventure-works.com 987-555-0111

19979 Ezio Alboni ezioa@adventure-works.com 789-555-0111

Summary

I cannot begin to tell you how exciting these new type system features are. The new lax vali-
dation ability in XML has already allowed me to solve a major XML schema-related problem I
was having. I have begun to write an application that uses spatial data and Microsoft’s Virtual
Earth. I am working on a complex hierarchy model using the HIERARCHYID data type. I know
several customers who will immediately benefi t from table-valued parameters. The only
problem I will have with all of these new features is fi nding the time to use them all!

SELECT *

FROM dbo.Customer

WHERE LastName IN (‘DeBetta’, ‘Machanic’)

CustomerID FirstName LastName EmailAddress Phone
87.indd 138 6/30/2008 2:09:54 PM

C04625587.ind
Chapter 4

Programmability

SQL Server 2005 implemented a number of new features and enhancements for Transact-
SQL (T-SQL). Like its predecessor, SQL Server 2008 again brings more new features and en-
hancement for T-SQL.

This chapter is going to cover a couple of key development areas. The initial focus will be on
the new and enhanced T-SQL features, which will then lead into the common language run-
time (CLR) coding enhancements, as well as some new user interface features in SQL Server
Management Studio (SSMS) that relate to programmability.

Variable Declaration and Assignment

A long time ago, I learned that T-SQL was not like other programming languages. For a long
time, I accepted that when I declared a variable, all I could do was to declare it. Sure, stored
procedure and user-defi ned function parameters could be declared and set to a default, but
that simply didn’t happen for inline variable declarations in T-SQL. That is, until now.

Indeed, it is true. You can now declare and assign a variable in one statement. So instead of
writing this code:

DECLARE

 @someIntVal INT,

 @someStringVal varchar(100)

SET @someIntVal = 1

SET @someStringVal = ‘One’

You can now write this code:

DECLARE

 @someIntVal INT = 1,

 @someStringVal varchar(100) = ‘One’

DECLARE

 @someIntVal INT,

 @someStringVal varchar(100)

SET @someIntVal = 1

SET @someStringVal = ‘One’

DECLARE

 @someIntVal INT = 1,

 @someStringVal varchar(100) = ‘One’
 139

I know it seems like such a simple change, but believe me, it adds up over time. For example,
look at this set of variable declarations and assignments from the aspnet_Membership_
CreateUser stored procedure:

d 139 6/30/2008 2:10:13 PM

140

C04625587.indd 140
Introducing SQL Server 2008

DECLARE @ApplicationId uniqueidentifier

SELECT @ApplicationId = NULL

DECLARE @NewUserId uniqueidentifier

SELECT @NewUserId = NULL

DECLARE @IsLockedOut bit

SET @IsLockedOut = 0

DECLARE @LastLockoutDate datetime

SET @LastLockoutDate = CONVERT(datetime, ‘17540101’, 112)

DECLARE @FailedPasswordAttemptCount int

SET @FailedPasswordAttemptCount = 0

DECLARE @FailedPasswordAttemptWindowStart datetime

SET @FailedPasswordAttemptWindowStart = CONVERT(datetime, ‘17540101’, 112)

DECLARE @FailedPasswordAnswerAttemptCount int

SET @FailedPasswordAnswerAttemptCount = 0

DECLARE @FailedPasswordAnswerAttemptWindowStart datetime

SET @FailedPasswordAnswerAttemptWindowStart = CONVERT(datetime, ‘17540101’, 112)

DECLARE @NewUserCreated bit

DECLARE @ReturnValue int

SET @ReturnValue = 0

DECLARE @ErrorCode int

SET @ErrorCode = 0

DECLARE @TranStarted bit

SET @TranStarted = 0

This preceding approach allows you to see each variable declaration and assignment to-
gether (a stylistic choice). Particularly for such coding techniques, this new declare and assign
ability in Microsoft SQL Server 2008 has great potential, as shown here.

DECLARE

 @ApplicationId uniqueidentifier = NULL,

 @NewUserId uniqueidentifier = NULL,

 @IsLockedOut bit = 0,

 @LastLockoutDate datetime = CONVERT(datetime, ‘17540101’, 112),

 @FailedPasswordAttemptCount int = 0,

 @FailedPasswordAttemptWindowStart datetime

DECLARE @ApplicationId uniqueidentifier

SELECT @ApplicationId = NULL

DECLARE @NewUserId uniqueidentifier

SELECT @NewUserId = NULL

DECLARE @IsLockedOut bit

SET @IsLockedOut = 0

DECLARE @LastLockoutDate datetime

SET @LastLockoutDate = CONVERT(datetime, ‘17540101’, 112)

DECLARE @FailedPasswordAttemptCount int

SET @FailedPasswordAttemptCount = 0

DECLARE @FailedPasswordAttemptWindowStart datetime

SET @FailedPasswordAttemptWindowStart = CONVERT(datetime, ‘17540101’, 112)

DECLARE @FailedPasswordAnswerAttemptCount int

SET @FailedPasswordAnswerAttemptCount = 0

DECLARE @FailedPasswordAnswerAttemptWindowStart datetime

SET @FailedPasswordAnswerAttemptWindowStart = CONVERT(datetime, ‘17540101’, 112)

DECLARE @NewUserCreated bit

DECLARE @ReturnValue int

SET @ReturnValue = 0

DECLARE @ErrorCode int

SET @ErrorCode = 0

DECLARE @TranStarted bit

SET @TranStarted = 0

DECLARE

 @ApplicationId uniqueidentifier = NULL,

 @NewUserId uniqueidentifier = NULL,

 @IsLockedOut bit = 0,

 @LastLockoutDate datetime = CONVERT(datetime, ‘17540101’, 112),

 @FailedPasswordAttemptCount int = 0,

 @FailedPasswordAttemptWindowStart datetime
 = CONVERT(datetime, ‘17540101’, 112),

 @FailedPasswordAnswerAttemptCount int = 0,

 @FailedPasswordAnswerAttemptWindowStart datetime

 = CONVERT(datetime, ‘17540101’, 112),

 @NewUserCreated bit,

 = CONVERT(datetime, ‘17540101’, 112),

 @FailedPasswordAnswerAttemptCount int = 0,

 @FailedPasswordAnswerAttemptWindowStart datetime

 = CONVERT(datetime, ‘17540101’, 112),

 @NewUserCreated bit,

6/30/2008 2:10:13 PM

C04625587.indd 141
Chapter 4 Programmability 141

 @ReturnValue int = 0,

 @ErrorCode int = 0,

 @TranStarted bit = 0

You can also declare and assign using other scalar values, such as those from variables, as
shown in the following example:

DECLARE @x int = 10

DECLARE @y int = @x + 1

But mind you, because the declaration of @y references @x, it cannot be in the same decla-
ration, as shown here:

-- Not allowed

DECLARE @x int = 10, @y int = @x + 1

I expect that you are now speechless, so I will show you the second new feature for variable
assignment in SQL Server 2008. I give you compound assignment:

DECLARE @n int = 10

SET @n += 1

SELECT @n AS [n]

As you expect, this will return a value of 11. Compound assignment allows you to skip the
repetition of a variable that is being assigned based on itself such that SET @x = @x + 1 is
the same as SET @x += 1. There is a total of eight compound assignment operators.

Operator Description Operator Description

+= Add and assign -= Subtract and assign

*= Multiply and assign /= Divide and assign

%= Modulo and assign &= Bitwise AND and assign

^= Bitwise XOR and assign |= Bitwise OR and assign

Compound assignment is like any other form of assignment and cannot be done inline in a
statement. So, statements such as the following are not allowed.

 @ReturnValue int = 0,

 @ErrorCode int = 0,

 @TranStarted bit = 0

DECLARE @x int = 10

DECLARE @y int = @x + 1

-- Not allowed

DECLARE @x int = 10, @y int = @x + 1

DECLARE @n int = 10

SET @n += 1

SELECT @n AS [n]

Operator Description Operator Description
DECLARE @a int = 3

--This line of code will fail

SET @a *= @a += 6

DECLARE @a int = 3

--This line of code will fail

SET @a *= @a += 6

6/30/2008 2:10:14 PM

C04625587
142 Introducing SQL Server 2008

You can, however, assign the same variable multiple times using a SELECT statement, as
shown here.

DECLARE @a int = 5;

SELECT @a *= @a, @a += @a;

SELECT @a;

You must be asking yourself “what is the fi nal value of @a?” As you would expect, the result
is 50. First the compound multiplication is executed, changing @a value to 25 (5 * 5) and
then it is added to itself, resulting in 50 (25 + 25). As a matter of fact, when you have mul-
tiple assignments in a SELECT statement, they seem to always be done from left to right,
regardless of the operation being performed. This makes perfect sense being that there is
no order of operations involved because these are individual assignments. So although you
might be inclined to think that the following code would also return a value of 50, it actually
returns 100.

DECLARE @a int = 5;

SELECT @a += @a, @a *= @a;

SELECT @a;

Just in case this isn’t clear why, keep in mind that that code is the same as this code.

DECLARE @a int = 5;

SELECT @a = @a + @a, @a = @a * @a;

SELECT @a;

Assignment occurs from left to right, regardless of what actual expression is being used to
determine the resulting value. What I am trying to convey is that you should not confuse
compound assignment with other T-SQL operators—these are simply still assigning values
and do not have an order of operation.

Table Value Constructor Through VALUE Clause

Here is an excerpt of a script that installs the msdb system database.

DECLARE @a int = 5;

SELECT @a *= @a, @a += @a;

SELECT @a;

DECLARE @a int = 5;

SELECT @a += @a, @a *= @a;

SELECT @a;

DECLARE @a int = 5;

SELECT @a = @a + @a, @a = @a * @a;

SELECT @a;
INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (0, 1, 1, N’[Uncategorized (Local)]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (1, 1, 1, N’Jobs from MSX’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (0, 1, 1, N’[Uncategorized (Local)]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (1, 1, 1, N’Jobs from MSX’)

.indd 142 6/30/2008 2:10:14 PM

C04625587.indd 143
Chapter 4 Programmability 143

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (2, 1, 2, N’[Uncategorized (Multi-Server)]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (3, 1, 1, N’Database Maintenance’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (4, 1, 1, N’Web Assistant’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (5, 1, 1, N’Full-Text’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (6, 1, 1, N’Log Shipping’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (7, 1, 1, N’Database Engine Tuning Advisor’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (98, 2, 3, N’[Uncategorized]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (99, 3, 3, N’[Uncategorized]’)

Some people prefer to use a SELECT with UNION ALL to do the same operation, as shown
here:

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

SELECT 0, 1, 1, N’[Uncategorized (Local)]’ UNION ALL

SELECT 1, 1, 1, N’Jobs from MSX’ UNION ALL

SELECT 2, 1, 2, N’[Uncategorized (Multi-Server)]’ UNION ALL

SELECT 3, 1, 1, N’Database Maintenance’ UNION ALL

SELECT 4, 1, 1, N’Web Assistant’ UNION ALL

SELECT 5, 1, 1, N’Full-Text’ UNION ALL

SELECT 6, 1, 1, N’Log Shipping’ UNION ALL

SELECT 7, 1, 1, N’Database Engine Tuning Advisor’ UNION ALL

SELECT 98, 2, 3, N’[Uncategorized]’ UNION ALL

SELECT 99, 3, 3, N’[Uncategorized]’

And now, in SQL Server 2008, you can simply execute the following statement to achieve the
same results.

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

VALUES

 (0, 1, 1, N’[Uncategorized (Local)]’),

 (1, 1, 1, N’Jobs from MSX’),

 (2, 1, 2, N’[Uncategorized (Multi-Server)]’),

 (3, 1, 1, N’Database Maintenance’),

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (2, 1, 2, N’[Uncategorized (Multi-Server)]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (3, 1, 1, N’Database Maintenance’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (4, 1, 1, N’Web Assistant’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (5, 1, 1, N’Full-Text’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (6, 1, 1, N’Log Shipping’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (7, 1, 1, N’Database Engine Tuning Advisor’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (98, 2, 3, N’[Uncategorized]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

 VALUES (99, 3, 3, N’[Uncategorized]’)

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

SELECT 0, 1, 1, N’[Uncategorized (Local)]’ UNION ALL

SELECT 1, 1, 1, N’Jobs from MSX’ UNION ALL

SELECT 2, 1, 2, N’[Uncategorized (Multi-Server)]’ UNION ALL

SELECT 3, 1, 1, N’Database Maintenance’ UNION ALL

SELECT 4, 1, 1, N’Web Assistant’ UNION ALL

SELECT 5, 1, 1, N’Full-Text’ UNION ALL

SELECT 6, 1, 1, N’Log Shipping’ UNION ALL

SELECT 7, 1, 1, N’Database Engine Tuning Advisor’ UNION ALL

SELECT 98, 2, 3, N’[Uncategorized]’ UNION ALL

SELECT 99, 3, 3, N’[Uncategorized]’

INSERT INTO dbo.syscategories (category_id, category_class, category_type, name)

VALUES

 (0, 1, 1, N’[Uncategorized (Local)]’),

 (1, 1, 1, N’Jobs from MSX’),

 (2, 1, 2, N’[Uncategorized (Multi-Server)]’),

 (3, 1, 1, N’Database Maintenance’),
 (4, 1, 1, N’Web Assistant’),

 (5, 1, 1, N’Full-Text’),

 (6, 1, 1, N’Log Shipping’),

 (7, 1, 1, N’Database Engine Tuning Advisor’),

 (98, 2, 3, N’[Uncategorized]’),

 (99, 3, 3, N’[Uncategorized]’)

 (4, 1, 1, N’Web Assistant’),

 (5, 1, 1, N’Full-Text’),

 (6, 1, 1, N’Log Shipping’),

 (7, 1, 1, N’Database Engine Tuning Advisor’),

 (98, 2, 3, N’[Uncategorized]’),

 (99, 3, 3, N’[Uncategorized]’)

6/30/2008 2:10:14 PM

C0462558
144 Introducing SQL Server 2008

The difference is simply amazing. I was a big fan of using SELECT statements with UNION
ALL to generate a row set, and now it is very apparent to me that this table value constructor
(TVC) through VALUE clause feature will further simplify the scripting of data, the creation of
demos, and so on. Of course, you can also use the TVC to do things besides inserting mul-
tiple rows of data. Back in an earlier chapter, I was querying the Declarative Management
Framework system tables and views, as shown here:

;WITH AutomatedPolicyExecutionMode (ModeId, ModeName)

AS

(SELECT *

 FROM (VALUES

 (0, ‘On demand’),

 (1, ‘Enforce Compliance’),

 (2, ‘Check on change and log’),

 (4, ‘Check on schedule and log’)

) AS EM(ModeId, ModeName)

)

SELECT

 pmf.[management_facet_id] AS FacetID

 , pmf.[name] AS FacetName

 , APEM.[ModeName]

FROM syspolicy_management_facets AS pmf

 INNER JOIN AutomatedPolicyExecutionMode AS APEM

 ON pmf.[execution_mode] & APEM.[ModeId] = APEM.[ModeId]

ORDER BY pmf.[name], APEM.[ModeId]

Because there was no metadata for the various execution modes, I created it using the row
constructor ability combined with a common table expression (CTE) to allow me to use the
TVC data in a join with another table. Again, this could have been done using a SELECT state-
ment with UNION ALL, and it behaves in exactly the same way. The only difference is that
as the number of generated rows grows, this syntax will require less typing and less space in
script.

Merge

Back before SQL Server 2005 was released, there was talk of a feature that was known by
the name “Merge” or “Upsert,” which was the ability to insert and update a table’s data in a
single data manipulation language (DML) statement. Alas, the feature didn’t make it into the
release to manufacturing (RTM) of SQL Server 2005. Much to my satisfaction and pleasure,

;WITH AutomatedPolicyExecutionMode (ModeId, ModeName)

AS

(SELECT *

 FROM (VALUES

 (0, ‘On demand’),

 (1, ‘Enforce Compliance’),

 (2, ‘Check on change and log’),

 (4, ‘Check on schedule and log’)

) AS EM(ModeId, ModeName)

)

SELECT

 pmf.[management_facet_id] AS FacetID

 , pmf.[name] AS FacetName

 , APEM.[ModeName]

FROM syspolicy_management_facets AS pmf

 INNER JOIN AutomatedPolicyExecutionMode AS APEM

 ON pmf.[execution_mode] & APEM.[ModeId] = APEM.[ModeId]

ORDER BY pmf.[name], APEM.[ModeId]
however, it has made it into SQL Server 2008.

The new MERGE statement has the ability to insert new data into a target table and update
or delete existing data in that target table, directly or by means of a view, using a single T-
SQL statement.

7.indd 144 6/30/2008 2:10:14 PM

C04625587.indd
Chapter 4 Programmability 145

The abridged syntax of MERGE is as follows:

MERGE <target_table> [AS table_alias]

USING <table_source>

ON <search_condition>

[WHEN MATCHED [AND <search_condition>]

 THEN {UPDATE… | DELETE}]

[WHEN NOT MATCHED BY TARGET [AND <search_condition>]

 THEN INSERT…]

[WHEN NOT MATCHED BY SOURCE [AND <search_condition>]

 THEN {UPDATE… | DELETE}]

;

Note Although using a semicolon as a statement terminator is not offi cially required by most
T-SQL statements, the MERGE statement does require its use.

The MERGE statement initially specifi es a target table, which can actually be a table or a view
(see “Modifying Data Through a View” in SQL Server 2008 Books Online for details about
modifying through a view). The USING clause specifi es the source of the data against which
you will be comparing the target data. The ON clause specifi es the basis for the comparison
between the target and the source.

For example, you may be using the Customer table as your target and the NewCustomer
table as the source, where NewCustomer contains a batch of customers that need to be in-
serted or potentially updated in your existing Customer table data. If the customer needs to
be updated, the primary key value of the customer, CustomerID, is used to match the up-
dated customer data to the existing customer, as shown here:

MERGE Customer AS c

USING NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (FirstName, LastName, CompanyName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.CompanyName, nc.EmailAddress,

 nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,

MERGE <target_table> [AS table_alias]

USING <table_source>

ON <search_condition>

[WHEN MATCHED [AND <search_condition>]

 THEN {UPDATE… | DELETE}]

[WHEN NOT MATCHED BY TARGET [AND <search_condition>]

 THEN INSERT…]

[WHEN NOT MATCHED BY SOURCE [AND <search_condition>]

 THEN {UPDATE… | DELETE}]

;

MERGE Customer AS c

USING NewCustomer AS nc

ON c.CustomerID = nc.CustomerID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (FirstName, LastName, CompanyName, EmailAddress, Phone)

 VALUES (nc.FirstName, nc.LastName, nc.CompanyName, nc.EmailAddress,

 nc.Phone)

WHEN MATCHED THEN

 UPDATE SET

 FirstName = nc.FirstName,

 LastName = nc.LastName,
 CompanyName = nc.CompanyName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

 CompanyName = nc.CompanyName,

 EmailAddress = nc.EmailAddress,

 Phone = nc.Phone;

 145 6/30/2008 2:10:14 PM

14

C04625587.indd
6 Introducing SQL Server 2008

In this preceding example, new customers (which would have a CustomerID of 0 or
NULL) would get inserted into the Customer table, and existing customers (matched on
CustomerID) would always be updated, regardless whether the data in the target and source
was different.

The WHEN Clauses

The key to MERGE are the three WHEN clauses used to determine when the various actions
should take place: WHEN MATCHED, WHEN NOT MATCHED BY TARGET, and WHEN NOT
MATCHED BY SOURCE.

WHEN MATCHED

The WHEN MATCHED clause is used to find matches between the target and source tables
and can either perform an UPDATE or DELETE against the target table. There are a few rules
you need to keep in mind when using this clause.

When performing an UPDATE with this clause, the match condition must only return
one row from the source table because the MERGE statement cannot perform the same
DML operation on a single row of data in the target more than one time. If the WHEN
MATCHED condition returns more than one row and an UPDATE is used, an error will
result.

WHEN MATCHED can be used, at most, two times in the MERGE statement. If used
twice, the following rules also apply:

The two clauses are processed in order.

One clause must UPDATE, and the other one must DELETE (order is not
important).

The second WHEN MATCH clause is checked only if the first is not satisfied.

The first WHEN MATCHED clauses must specify additional criteria. If you at-
tempt to execute without specifying additional search criteria for the first WHEN
MATCHED clause, you will receive an error.

Note Although the first clause is required to have additional criteria, it doesn’t prevent

you from using the same criteria for both WHEN MATCHED clauses. If you do use the same
criteria for both WHEN MATCHED clauses, the second one will never get processed be-
cause the second clause only gets checked when the first one does not match the specified
criteria. If they have the same criteria, the second would also not match.

 146 6/30/2008 2:10:14 PM

C04625587.indd 147
Chapter 4 Programmability 147

WHEN NOT MATCHED [BY TARGET]

WHEN NOT MATCHED BY TARGET (BY TARGET is optional, although I suggest being explicit
and using it) is used to determine if there are rows in the source table that don’t exist in the
target table. In other words, it is used to find rows that might need to be inserted into the
target table from the source table.

This is the only WHEN clause that can INSERT data into the source table.

There can be, at most, one WHEN NOT MATCHED BY TARGET clause in a MERGE
statement.

Additional criteria is optional.

WHEN NOT MATCHED BY SOURCE

This clause is used to find rows in the target table that do not exist in the source table. Here
are some rules to abide by when using WHEN NOT MATCHED BY SOURCE:

WHEN NOT MATCHED BY SOURCE can be used, at most, two times in the MERGE state-
ment. If used twice, the following rules apply:

The two clauses are processed in order.

One clause must UPDATE, and the other one must DELETE (order is not
important).

The second clause is checked only if the first is not satisfied.

The first clause must specify additional criteria. If you attempt to execute without
specifying additional search criteria for the first clause, you will receive an error.

Note Although the first clause is required to have additional criteria, it doesn’t prevent
you from using the same criteria for both WHEN NOT MATCHED BY SOURCE clauses. If you
do use the same criteria for both WHEN NOT MATCHED BY SOURCE clauses, the second
one will never get processed because the second clause only gets checked when the first
one does not match the specified criteria. If they have the same criteria, the second would
also not match.
Other Notes on All Matching Clauses

INSTEAD OF triggers defined on a target table work in the same fashion as they always have.
They do not actually modify the underlying table but rather rely on the INSTEAD OF trigger
to do that work (by the now populated inserted and deleted trigger tables). Also, if you define

6/30/2008 2:10:15 PM

C0462558
148 Introducing SQL Server 2008

an INSTEAD OF trigger for any action on the target table, there must be an INSTEAD OF trig-
ger for all actions on the target table.

Note Triggers only see the rows affected by the associated trigger action. So an insert trigger
only sees inserted rows (and not the deleted or updated ones). An update trigger only sees up-
dated rows, and a delete trigger only sees deleted rows.

Also, because each trigger is called for each action, a trigger that handles multiple actions can be
fi red once for each action (assuming all actions occurred). For example, if the MERGE statement
inserts and updates rows and there is a trigger defi ned for insert and update, that trigger will be
called twice—once for the insert and once for the update, although not in any particular order.

To achieve the correct matching, the MERGE statement does outer joins between the tar-
get and source data as needed. When using the WHEN NOT MATCHED BY TARGET clause,
an outer join occurs from the source table to the target table. This means that, for all rows
from the source table, MERGE checks to see if a match exists in the target, which means
that all rows from the source are returned. The converse is true when using the WHEN NOT
MATCHED BY SOURCE clause, and all rows from the target table are returned in order to per-
form an outer join from the target table to the source table.

Therefore, if you use both the WHEN NOT MATCHED BY TARGET and the WHEN NOT
MATCHED BY SOURCE clauses in a single MERGE statement, an outer join is used in both di-
rections resulting in the use of a full outer join.

MERGE Exemplifi ed

Let’s go through a simple example using the new AdventureWorksLT database sample. This
new sample database contains customers and their associated sales data. For reporting pur-
poses, I want to create a fl at view of customers and sales total and last sales date, so I fi rst
create a table to hold that information, as shown here:

USE AdventureWorksLT;

GO

CREATE TABLE SalesLT.CustomerTotals

(

 CustomerID int PRIMARY KEY,

 LastOrderDate datetime,

 SalesTotal money

USE AdventureWorksLT;

GO

CREATE TABLE SalesLT.CustomerTotals

(

 CustomerID int PRIMARY KEY,

 LastOrderDate datetime,

 SalesTotal money
);

GO

From here, I will do a very simple merge between the Customer table and the new
CustomerTotals table.

);

GO

7.indd 148 6/30/2008 2:10:15 PM

C04625587.indd 149
Chapter 4 Programmability 149

MERGE SalesLT.CustomerTotals AS ct

USING SalesLT.Customer AS c

ON c.CustomerID = ct.CustomerID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID)

 VALUES (c.CustomerID);

This MERGE statement looks to see what rows in Customer (the source) do not have a corre-
sponding match in CustomerTotals (the target). Because the CustomerTotal table is empty, all
rows in Customer should meet the criteria, and you should see a message that 440 rows were
affected (assuming you haven’t deleted any customers yet). Running it a second time will
result in zero (0) rows being affected, because all rows will now match between target and
source (because you just inserted them from the source to the target).

Now, you will use data from the SalesOrderHeader table to update the CustomerTotals table
with sales total and last order date data, as shown here:

WITH CustSales AS

(SELECT

 CustomerID,

 MAX(OrderDate) as MaxOrderDate,

 SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal = CustSales.TotalDueTotal

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);

So what is this MERGE statement actually doing? The MERGE is updating the last sales date
and total sales amount for any customer that exists in both the target (CustomerTotals) and
the source (a CTE of aggregated customer sales data). The MERGE is also deleting any cus-

MERGE SalesLT.CustomerTotals AS ct

USING SalesLT.Customer AS c

ON c.CustomerID = ct.CustomerID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID)

 VALUES (c.CustomerID);

WITH CustSales AS

(SELECT

 CustomerID,

 MAX(OrderDate) as MaxOrderDate,

 SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal = CustSales.TotalDueTotal

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);
tomers from the target table that don’t have any associated sales (don’t exist in the customer
sales CTE), and it is adding new customers into the target table if they don’t already exist
in that table but do exist in the source. As you may now realize, the fi rst step to populate
the CustomerTotals table was unnecessary because this statement would also populate the
CustomerID values (without the overhead of populating them all and then removing a

6/30/2008 2:10:15 PM

150

C04625587.indd 150
Introducing SQL Server 2008

majority of them). What you may not have noticed is that, although this MERGE seems to be
exactly what you want, it is very ineffi cient. Stop for a moment and examine the code and
see if you can spot the ineffi ciency. I’ll wait for you…

Optimizing MERGE

Now, you have pondered for at least a few moments about the potential performance prob-
lem the last MERGE statement could cause. So where is the ineffi ciency? It is in the WHEN
MATCHED clause. Imagine if you had millions of active customers and you ran that MERGE
statement that checked the sales order header data against the customer totals data. Every
time you execute that MERGE statement, you would be updating millions of records with the
same data—not very effi cient. A better choice would be to update only those records that
have changed. And so, a small change to the WHEN MATCHED clause can make a world of
difference, as shown here:

WITH CustSales AS

(SELECT

 CustomerID,

 MAX(OrderDate) as MaxOrderDate,

 SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED AND LastOrderDate != CustSales.MaxOrderDate THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal = CustSales.TotalDueTotal

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);

Only if the customer IDs match and the date of the last order in the sales order data is differ-
ent from the date of the last order in the customer totals data will the CustomerTotals table
be updated. The point of this exercise is to make you aware that you should test your code
and ensure that you are only doing the operations that you need to do to insert, update, or

WITH CustSales AS

(SELECT

 CustomerID,

 MAX(OrderDate) as MaxOrderDate,

 SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED AND LastOrderDate != CustSales.MaxOrderDate THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal = CustSales.TotalDueTotal

WHEN NOT MATCHED BY SOURCE THEN

DELETE

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);
delete your target data.

Still another alternate approach would be to update only since the last known change (which
also means you wouldn’t delete missing records because your source would only have a sub-
set of customers), as shown here:

6/30/2008 2:10:15 PM

C04625587.indd 151
Chapter 4 Programmability 151

WITH CustSales AS

(SELECT CustomerID, MAX(OrderDate) as MaxOrderDate, SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 WHERE OrderDate >

 ISNULL((SELECT MAX(LastOrderDate) FROM SalesLT.CustomerTotals), 0)

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal += CustSales.TotalDueTotal

-- WHEN NOT MATCHED BY SOURCE THEN -- removed due to dire consequences

-- DELETE -- if left in (see explanation below)

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);

You should take special care to note the removal of the WHEN NOT MATCHED BY SOURCE
clause. If that clause had not been removed and the MERGE statement is run multiple times,
it will eventually get into a two-phase cycle of an empty target table and a fully loaded tar-
get table. If the source table data had not changed since last execution of this merge, the
CustSales CTE would have returned 0 rows, and because the source would have no matches,
all the target table data would be deleted. Then, on the next execution, because the target
would have no rows, it would be fully populated.

The moral of this story: When using MERGE, be careful when you use a source that has a dif-
ferent scope than the target (a CTE or view that limits, a temporary table with limited data,
and so on), and always, always do thorough testing.

Indexing and MERGE

One last item of note is how indexes affect the performance of MERGE. The columns in the
ON clause obviously play a big role in how well MERGE will perform. For better performance,
both the target and source should have an index on the columns used in the ON clause, and,
if both of those indexes are unique, you will get still better performance.

In the example above, the target table has a primary key on the ON clause column—a good

WITH CustSales AS

(SELECT CustomerID, MAX(OrderDate) as MaxOrderDate, SUM(TotalDue) as TotalDueTotal

 FROM SalesLT.SalesOrderHeader

 WHERE OrderDate >

 ISNULL((SELECT MAX(LastOrderDate) FROM SalesLT.CustomerTotals), 0)

 GROUP BY CustomerID

)

MERGE SalesLT.CustomerTotals AS ct

USING CustSales

ON CustSales.CustomerID = ct.CustomerID

WHEN MATCHED THEN

 UPDATE SET

 LastOrderDate = CustSales.MaxOrderDate,

 SalesTotal += CustSales.TotalDueTotal

-- WHEN NOT MATCHED BY SOURCE THEN -- removed due to dire consequences

-- DELETE -- if left in (see explanation below)

WHEN NOT MATCHED BY TARGET THEN

 INSERT (CustomerID, LastOrderDate, SalesTotal)

 VALUES (CustSales.CustomerID, CustSales.MaxOrderDate, CustSales.TotalDueTotal);
thing. The source, however, is a CTE that happens to GROUP BY the column used in the
MERGE statement’s ON clause. Fortunately in this situation, this grouping essentially be-
comes the unique index for the CTE (assuming a streamed aggregator is used). This may not
always be the case, and, as you saw, even slight variations in the CTE could have dire effects.
Again, take care when using a CTE (or a view) as the source for a MERGE.

6/30/2008 2:10:16 PM

152

C04625587.indd 15
Introducing SQL Server 2008

In the end, how you use and optimize the use of MERGE will be entirely up to what the busi-
ness requires, or in consulting words—it depends.

OUTPUT and MERGE

The OUTPUT clause can also be used with the MERGE statement. Like SQL Server 2005, you
still have the INSERTED and DELETED references, so you can see the inserted data; the de-
leted data; and, for updates, the original and changed data. But OUTPUT with MERGE offers
two more special features.

The fi rst is the special $ACTION value, which returns INSERT, UPDATE, or DELETE to indicate
what action was taken on that particular row. For example, examine the following code.

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),

 (6, ‘F’)

INSERT INTO @T2

VALUES

 (1, ‘A’),

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),

 (6, ‘F’)

INSERT INTO @T2

VALUES

 (1, ‘A’),

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)
WHEN NOT MATCHED BY SOURCE THEN

 DELETE

OUTPUT $ACTION, DELETED.*, INSERTED.*;

SELECT * FROM @T1

WHEN NOT MATCHED BY SOURCE THEN

DELETE

OUTPUT $ACTION, DELETED.*, INSERTED.*;

SELECT * FROM @T1

2 6/30/2008 2:10:16 PM

C04625587.indd 153
Chapter 4 Programmability 153

This would return the following two sets of results.

$ACTION id (deleted) name (deleted) id (inserted) name (inserted)

DELETE 2 B NULL NULL

DELETE 4 D NULL NULL

UPDATE 5 E 5 R

DELETE 6 F NULL NULL

INSERT NULL NULL 7 T

Id name

1 A

3 C

5 R

7 T

The second table shows the fi nal values in the target table, @T1. The fi rst table shows the
results of the OUTPUT clause. It reveals that row with id 5 was updated, row with id 7 was
inserted, and rows with id 2, 4, and 6 were deleted. Because the WHEN MATCHED clause
excluded matches between the source and target where the name was equal, rows with ids 1
and 3 were not affected.

Now what if I needed to store those OUTPUT results in another table? Examine this code.

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

DECLARE @T3 TABLE

 ([action] nvarchar(10), oldid int, oldname varchar(10), id int, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),

$ACTION id (deleted) name (deleted) id (inserted) name (inserted)

Id name

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

DECLARE @T3 TABLE

 ([action] nvarchar(10), oldid int, oldname varchar(10), id int, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),
 (6, ‘F’)

INSERT INTO @T2

VALUES

 (1, ‘A’),

 (6, ‘F’)

INSERT INTO @T2

VALUES

 (1, ‘A’),

6/30/2008 2:10:16 PM

154

C04625587.indd 154
Introducing SQL Server 2008

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

INSERT INTO @T3

SELECT *

FROM

(MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

OUTPUT $ACTION, DELETED.id as oldid, DELETED.name as oldname, INSERTED.*

) AS tChange;

;

SELECT * FROM @T3

SELECT * FROM @T1

Although the results tab will show exactly the same results as the previous code example, this
code is actually using the OUTPUT rows as the source for an outer INSERT statement. Now
you can do more than return these resulting OUTPUT values from the MERGE to some client
app; you can store changes as needed. For example, you may delete rows from the target
table, but you could use these features to store a copy of just the deleted rows into another
table, as shown in this example.

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

DECLARE @T1Deleted TABLE (id int, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),

 (6, ‘F’)

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

INSERT INTO @T3

SELECT *

FROM

(MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

OUTPUT $ACTION, DELETED.id as oldid, DELETED.name as oldname, INSERTED.*

) AS tChange;

;

SELECT * FROM @T3

SELECT * FROM @T1

DECLARE @T1 TABLE (id int primary key, name varchar(10))

DECLARE @T2 TABLE (id int primary key, name varchar(10))

DECLARE @T1Deleted TABLE (id int, name varchar(10))

INSERT INTO @T1

VALUES

 (1, ‘A’),

 (2, ‘B’),

 (3, ‘C’),

 (4, ‘D’),

 (5, ‘E’),

 (6, ‘F’)
INSERT INTO @T2

VALUES

 (1, ‘A’),

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

INSERT INTO @T2

VALUES

 (1, ‘A’),

 (3, ‘C’),

 (5, ‘R’),

 (7, ‘T’)

6/30/2008 2:10:16 PM

C04625587.indd
Chapter 4 Programmability 155

INSERT INTO @T1Deleted (id, name)

SELECT id, name

FROM

(MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

OUTPUT $ACTION, DELETED.id , DELETED.name

) AS tChange ([Action], [id], [name])

WHERE [Action] = N’DELETE’;

;

SELECT * FROM @T1Deleted

SELECT * FROM @T1

This last example adds all deleted data to the @T1Deleted table, so although three rows are
removed from @T1, they are kept in @T1Deleted.

GROUP BY GROUPING SETS

Do you remember the COMPUTE [BY] clause? How about GROUP BY … WITH CUBE or
GROUP BY … WITH ROLLUP? Well, times have changed, and these non-ISO-compliant
clauses of the SELECT statement have been replaced with International Organization for
Standardization (ISO)-compliant equivalents. In addition, the GROUP BY clause has been
enhanced to allow for custom groupings that would be more diffi cult or cumbersome to
achieve using the older syntax.

To demonstrate how these new grouping features work, I am going to use variations on the
following query:

USE AdventureWorks;

GO

;WITH SalesData AS

(

 SELECT

INSERT INTO @T1Deleted (id, name)

SELECT id, name

FROM

(MERGE @T1 AS t1

USING @T2 AS t2

ON t1.id = t2.id

WHEN MATCHED and t1.name != t2.name THEN

 UPDATE

 SET name = t2.name

WHEN NOT MATCHED BY TARGET THEN

 INSERT VALUES (t2.id, t2.name)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

OUTPUT $ACTION, DELETED.id , DELETED.name

) AS tChange ([Action], [id], [name])

WHERE [Action] = N’DELETE’;

;

SELECT * FROM @T1Deleted

SELECT * FROM @T1

USE AdventureWorks;

GO

;WITH SalesData AS

(

 SELECT
 ST.[Group] AS [Region]

 , ST.CountryRegionCode AS [Country]

 , S.Name AS [Store]

 , CON.LastName AS [SalesPerson]

 , SOH.TotalDue

 FROM Sales.Customer AS C

 ST.[Group] AS [Region]

 , ST.CountryRegionCode AS [Country]

 , S.Name AS [Store]

 , CON.LastName AS [SalesPerson]

 , SOH.TotalDue

 FROM Sales.Customer AS C

 155 6/30/2008 2:10:16 PM

156

C04625587.indd 156
Introducing SQL Server 2008

 INNER JOIN Sales.Store AS S ON C.CustomerID = S.CustomerID

 INNER JOIN Sales.SalesTerritory AS ST ON C.TerritoryID = ST.TerritoryID

 INNER JOIN Sales.SalesOrderHeader AS SOH ON S.CustomerID = SOH.CustomerID

 INNER JOIN HumanResources.Employee AS E ON E.EmployeeID = SOH.SalesPersonID

 INNER JOIN Person.Contact AS CON ON CON.ContactID = E.ContactID

 WHERE ST.[Group] = N’Europe’

 AND S.Name LIKE ‘O[^i]%’

)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson;

This query returns the following data:

Region Country Store SalesPerson TotalSales

Europe DE Off-Price Bike Center Alberts 502.0217

Europe DE Off-Price Bike Center Valdez 2076.5676

Europe GB Outdoor Aerobic Systems Company Alberts 486.3925

Europe GB Outdoor Aerobic Systems Company Saraiva 3887.8586

The minimal number of rows returned will make it easier to follow the coming examples.
Also, for the sake of not repeating the same CTE over and over again, I will abbreviate further
versions of this query as follows:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson;

Now, onto the good stuff….

GROUPING SETS

Imagine, if you will, you want to generate a set of aggregate results, but you want to group
by varying columns. For example, you want totals by the following groups:

Region, Country, Store, and SalesPerson

 INNER JOIN Sales.Store AS S ON C.CustomerID = S.CustomerID

 INNER JOIN Sales.SalesTerritory AS ST ON C.TerritoryID = ST.TerritoryID

 INNER JOIN Sales.SalesOrderHeader AS SOH ON S.CustomerID = SOH.CustomerID

 INNER JOIN HumanResources.Employee AS E ON E.EmployeeID = SOH.SalesPersonID

 INNER JOIN Person.Contact AS CON ON CON.ContactID = E.ContactID

 WHERE ST.[Group] = N’Europe’

 AND S.Name LIKE ‘O[^i]%’

)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson;

Region Country Store SalesPerson TotalSales

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson;
Region and Country

Country

Region

None (grand total)

6/30/2008 2:10:17 PM

C04625587.indd 157
Chapter 4 Programmability 157

In SQL Server 2005, you would have to use the following query to achieve such a result.

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson

UNION ALL

SELECT Region, Country, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country

UNION ALL

SELECT NULL, Country, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Country

UNION ALL

SELECT Region, NULL, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region

UNION ALL

SELECT NULL, NULL, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData;

This query would produce the following results:

Region Country Store SalesPerson TotalSales

Europe DE Off-Price Bike Center Alberts 502.0217

Europe DE Off-Price Bike Center Valdez 2076.5676

Europe DE NULL NULL 2578.5893

NULL DE NULL NULL 2578.5893

Europe GB Outdoor Aerobic Systems Company Alberts 486.3925

Europe GB Outdoor Aerobic Systems Company Saraiva 3887.8586

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country, Store, SalesPerson

UNION ALL

SELECT Region, Country, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region, Country

UNION ALL

SELECT NULL, Country, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Country

UNION ALL

SELECT Region, NULL, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY Region

UNION ALL

SELECT NULL, NULL, NULL, NULL, SUM(TotalDue) AS [TotalSales]

FROM SalesData;

Region Country Store SalesPerson TotalSales
Europe GB NULL NULL 4374.2511

NULL GB NULL NULL 4374.2511

NULL NULL NULL NULL 6952.8404

Europe NULL NULL NULL 6952.8404

6/30/2008 2:10:17 PM

C04625587
158 Introducing SQL Server 2008

Using the GROUPING SETS feature, you can now rewrite this query with the same results as
follows:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country),

 (Country),

 (Region),

 ()

);

Each grouping set represents the grouping that appeared in each of the SELECT statements
in the version that uses UNION ALL: fi ve SELECT statements in the fi rst and fi ve grouping sets
in the second.

Now not only is the grouping sets version of the query far less complex and easier on the
eyes, but it will perform better. The performance gain is evidenced by the fact that the total
number of logical reads on all tables for the fi rst version (using UNION ALL) is 4429, and for
the second version (using GROUPING SETS), it is 1022. That’s a dramatic difference. The rea-
son for such a difference is that the fi rst query actually executes fi ve different queries against
the same underlying data and concatenates the results, and the second performs a single
query against the data.

Note These logical read numbers may vary slightly depending on what modifi cations you have
made or not made to the AdventureWorks sample database.

ROLLUP

The GROUP BY ROLLUP clause returns the grouped items and any aggregate value and adds
super-aggregates that roll up from right to left. For example, let’s say you want to add some
additional grouping to the query as follows:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country),

 (Country),

 (Region),

 ()

);
;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

.indd 158 6/30/2008 2:10:17 PM

C04625587.indd 159
Chapter 4 Programmability 159

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country, Store),

 (Region, Country),

 (Region),

 ()

);

This would give you the following results:

Region Country Store SalesPerson TotalSales

Europe DE Off-Price Bike Center Alberts 502.0217

Europe DE Off-Price Bike Center Valdez 2076.5676

Europe DE Off-Price Bike Center NULL 2578.5893

Europe DE NULL NULL 2578.5893

Europe GB Outdoor Aerobic Systems Company Alberts 486.3925

Europe GB Outdoor Aerobic Systems Company Saraiva 3887.8586

Europe GB Outdoor Aerobic Systems Company NULL 4374.2511

Europe GB NULL NULL 4374.2511

Europe NULL NULL NULL 6952.8404

NULL NULL NULL NULL 6952.8404

In this query, you are adding additional groupings by removing columns one at a time from
the right side of the grouping. When you perform this type of grouping, it is known as a roll-
up, and you can use the ROLLUP clause to get the same results with a more simple T-SQL
statement.

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY ROLLUP(Region, Country, Store, SalesPerson);

From a performance standpoint, this query is no more effi cient than the equivalent query us-

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country, Store),

 (Region, Country),

 (Region),

 ()

);

Region Country Store SalesPerson TotalSales

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY ROLLUP(Region, Country, Store, SalesPerson);
ing GROUPING SETS, because ROLLUP is a shortcut for that query that uses GROUPING SETS.
It is easier on the eyes and easier to type, and it makes writing the code a lot simpler and re-
viewing it later on simpler. As a rule, ROLLUP is equivalent to n + 1 GROUPING SETS, where n
is the number of columns in the ROLLUP clause.

6/30/2008 2:10:17 PM

160

C04625587.indd 160
Introducing SQL Server 2008

CUBE

Now imagine you wanted to create a grouping of all combinations of all columns being
grouped, such as the following query does:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country, Store),

 (Region, Country, SalesPerson),

 (Region, Store, SalesPerson),

 (Country, Store, SalesPerson),

 (Region, Country),

 (Region, Store),

 (Region, SalesPerson),

 (Country, Store),

 (Country, SalesPerson),

 (Store, SalesPerson),

 (Region),

 (Country),

 (Store),

 (SalesPerson),

 ()

);

As you add GROUPING SETS, you increase the number of rows output, because you are add-
ing additional aggregations of varying columns to your results, as shown here:

Region Country Store SalesPerson TotalSales

Europe DE Off-Price Bike Center Alberts 502.0217

NULL DE Off-Price Bike Center Alberts 502.0217

NULL NULL Off-Price Bike Center Alberts 502.0217

Europe GB Outdoor Aerobic Systems Company Alberts 486.3925

NULL GB Outdoor Aerobic Systems Company Alberts 486.3925

NULL NULL Outdoor Aerobic Systems Company Alberts 486.3925

NULL NULL NULL Alberts 988.4142

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 (Region, Country, Store, SalesPerson),

 (Region, Country, Store),

 (Region, Country, SalesPerson),

 (Region, Store, SalesPerson),

 (Country, Store, SalesPerson),

 (Region, Country),

 (Region, Store),

 (Region, SalesPerson),

 (Country, Store),

 (Country, SalesPerson),

 (Store, SalesPerson),

 (Region),

 (Country),

 (Store),

 (SalesPerson),

 ()

);

Region Country Store SalesPerson TotalSales
Europe GB Outdoor Aerobic Systems Company Saraiva 3887.8586

NULL GB Outdoor Aerobic Systems Company Saraiva 3887.8586

NULL NULL Outdoor Aerobic Systems Company Saraiva 3887.8586

NULL NULL NULL Saraiva 3887.8586

6/30/2008 2:10:18 PM

C04625587.indd 161
Chapter 4 Programmability 161

Region Country Store SalesPerson TotalSales

Europe DE Off-Price Bike Center Valdez 2076.5676

NULL DE Off-Price Bike Center Valdez 2076.5676

NULL NULL Off-Price Bike Center Valdez 2076.5676

NULL NULL NULL Valdez 2076.5676

NULL NULL NULL NULL 6952.8404

Europe NULL Off-Price Bike Center Alberts 502.0217

Europe NULL Off-Price Bike Center Valdez 2076.5676

Europe NULL Off-Price Bike Center NULL 2578.5893

NULL NULL Off-Price Bike Center NULL 2578.5893

Europe NULL Outdoor Aerobic Systems Company Alberts 486.3925

Europe NULL Outdoor Aerobic Systems Company Saraiva 3887.8586

Europe NULL Outdoor Aerobic Systems Company NULL 4374.2511

NULL NULL Outdoor Aerobic Systems Company NULL 4374.2511

Europe DE NULL Alberts 502.0217

NULL DE NULL Alberts 502.0217

Europe DE NULL Valdez 2076.5676

NULL DE NULL Valdez 2076.5676

NULL DE NULL NULL 2578.5893

Europe GB NULL Alberts 486.3925

NULL GB NULL Alberts 486.3925

Europe GB NULL Saraiva 3887.8586

NULL GB NULL Saraiva 3887.8586

NULL GB NULL NULL 4374.2511

Europe NULL NULL Alberts 988.4142

Europe NULL NULL Saraiva 3887.8586

Europe NULL NULL Valdez 2076.5676

Europe NULL NULL NULL 6952.8404

Europe DE Off-Price Bike Center NULL 2578.5893

NULL DE Off-Price Bike Center NULL 2578.5893

Europe GB Outdoor Aerobic Systems Company NULL 4374.2511

NULL GB Outdoor Aerobic Systems Company NULL 4374.2511

Region Country Store SalesPerson TotalSales
Europe DE NULL NULL 2578.5893

Europe GB NULL NULL 4374.2511

When you want to produce GROUPING SETS for all combinations of all columns, the formula
2n determines how many GROUPING SETS are needed for a set of columns, where n repre-

6/30/2008 2:10:18 PM

162

C04625587.indd 162
Introducing SQL Server 2008

sents the number of columns being grouped. In the query above, the four grouped columns
gives you 24, or 16 GROUPING SETS. Now, wouldn’t it be nice if there was some shortcut (like
ROLLUP) that could produce the same results? Of course it would be, and here it is:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY CUBE (Region, Country, Store, SalesPerson);

Now wasn’t that just way too easy?

GROUPING_ID

Now what if you need to fi nd out to which grouping set a row corresponds? For example, in
the following query, we want to know to which of the fi ve generated grouping sets each row
belongs.

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

 , GROUPING_ID(Region, Country, Store, SalesPerson) AS GroupingID

FROM SalesData

GROUP BY ROLLUP(Region, Country, Store, SalesPerson);

This query produces these results:

Region Country Store SalesPerson TotalSales GroupingID

Europe DE Off-Price Bike Center Alberts 502.0217 0

Europe DE Off-Price Bike Center Valdez 2076.5676 0

Europe DE Off-Price Bike Center NULL 2578.5893 1

Europe DE NULL NULL 2578.5893 3

Europe GB Outdoor Aerobic Systems
Company

Alberts 486.3925 0

Europe GB Outdoor Aerobic Systems
Company

Saraiva 3887.8586 0

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY CUBE (Region, Country, Store, SalesPerson);

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

 , GROUPING_ID(Region, Country, Store, SalesPerson) AS GroupingID

FROM SalesData

GROUP BY ROLLUP(Region, Country, Store, SalesPerson);

Region Country Store SalesPerson TotalSales GroupingID
Europe GB Outdoor Aerobic Systems
Company

NULL 4374.2511 1

Europe GB NULL NULL 4374.2511 3

Europe NULL NULL NULL 6952.8404 7

NULL NULL NULL NULL 6952.8404 15

6/30/2008 2:10:19 PM

C04625587.indd 163
Chapter 4 Programmability 163

Now you may fi nd it odd that the numbers aren’t consecutive. That is because the
GROUPING_ID returns based on all possible combinations. GROUPING_ID of 0 means that
the grouping set result grouped by all columns. GROUPING_ID of 1 means it grouped by
Region, Country, and Store (columns 1, 2 ,and 3, or all but 4). GROUPING_ID of 2 means it
grouped by Region, Country, and SalesPerson (columns 1, 2, and 4, or all but 3). GROUPING_
ID of 3 means it grouped by Region and Country (columns 1 and 2 only). Because this query
doesn’t group by all possible combinations, it will skip GROUPING_IDs it doesn’t produce.
CUBE will produce GROUPING_ID from 0 to 2n – 1, where n represents the number of col-
umns being grouped by.

Miscellaneous Thoughts

If you have done any work with Analysis Services (AS) cubes, you will notice some similarities
between simple AS cubes and GROUPING SETS. Although I am not proposing this as a re-
placement for AS cubes in general, it could be used as an alternate for simple AS cubes.

GROUPING SETS can contain multiple column lists and also multiple CUBE and ROLLUP claus-
es, as shown here:

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 CUBE (Region, Country),

 CUBE (Region, Store),

 CUBE (Store, SalesPerson)

);

This produces 3 groups of 4 grouping sets, for a total of 12, but only 8 of them are distinct.

CUBE GROUPING SET

CUBE (Region, County) Region, County

CUBE (Region, County) Region

CUBE (Region, County) County

CUBE (Region, County) ()

;WITH SalesData AS

(...)

SELECT Region, Country, Store, SalesPerson, SUM(TotalDue) AS [TotalSales]

FROM SalesData

GROUP BY GROUPING SETS

(

 CUBE (Region, Country),

 CUBE (Region, Store),

 CUBE (Store, SalesPerson)

);

CUBE GROUPING SET
CUBE (Region, Store) Region, Store

CUBE (Region, Store) Region

CUBE (Region, Store) Store

CUBE (Region, Store) ()

CUBE (Store, SalesPerson) Store, SalesPerson

6/30/2008 2:10:19 PM

C0462558
164 Introducing SQL Server 2008

CUBE GROUPING SET

CUBE (Store, SalesPerson) Store

CUBE (Store, SalesPerson) SalesPerson

CUBE (Store, SalesPerson) ()

Notice that you have 4 grand totals () grouping sets, as well as repeats for Region and Store.
If you had used the GROUPING_ID function, it would have revealed the repeated grouping
sets.

And fi nally, when using GROUP BY, there is no limit on the number of expressions. When us-
ing the more complex GROUPING SETS, ROLLUP, and CUBE, however, you can have at most
32 expressions and at most 212 (4,096) generated grouping sets. And because CUBE produces
2n grouping sets, CUBE can have at most 12 columns.

Object Dependencies

Object Dependency tracking in SQL Server 2005 and earlier versions was not as reliable as
people would have liked it to be. I have some exciting news for SQL Server 2008: Object de-
pendency functionality is better than its predecessors. Three new system objects have been
added to the Database Engine that you defi nitely want to know about:

sys.sql_expression_dependencies

This is a new catalog view that is meant to replace sys.sql_dependencies.

It tracks both schema-bound and non-schema–bound dependencies.

It tracks cross-database and cross-server references. (Only the name is returned;
the IDs are not resolved.)

Does not contain information about rules, defaults, temporary tables, temporary
stored procedures, or system objects.

sys.dm_sql_referenced_entities

This is a new dynamic management function that replaces sp_depends
functionality.

It returns a row for each entity referenced by a given entity.

It has two arguments:

The referencing entity name. Schema name is also required when the refer-

CUBE GROUPING SET
encing class is OBJECT.

The referencing class that can be one of these three values: OBJECT,
DATABASE_DDL_TRIGGER, or SERVER_DDL_TRIGGER.

7.indd 164 6/30/2008 2:10:19 PM

C04625587.indd
Chapter 4 Programmability 165

sys.dm_sql_referencing_entities

This too is a new dynamic management function that replaces sp_depends
functionality.

It returns a row for each entity referencing a given entity.

Two arguments:

The referenced entity name. Schema name is also required when the refer-
encing class is OBJECT, TYPE, or XML_SCHEMA_COLLECTION.

The referenced class that can be one of these four values: OBJECT, TYPE,
XML_SCHEMA_COLLECTION, or PARTITION_FUNCTION.

All three of these new system objects return varying table/view structures. SQL Server 2008
Books Online contains detailed information about these return structures.

CLR Enhancements

CLR integration introduced in SQL Server 2005 extended the programming choices a devel-
oper had. Although CLR integration does not replace T-SQL but rather extends it, some kinds
of code, like complicated string manipulation, is better and faster when programmed using
the CLR.

You can use CLR-based code to create stored procedures, user-defi ned functions, triggers,
user-defi ned aggregates, and user-defi ned types. But there were limitations to its use, such
as an 8K maximum size on user-defi ned types and user-defi ned aggregates.

Large Aggregates

A common scenario that requires a potentially lengthy string return value from an aggregate
is string concatenation. In a previous incarnation, the CLR-based string concatenation func-
tion that I (and so many others) wrote was limited to a return string of no more than 8,000
bytes. This was very limiting, for even a column with an average string length of 20 (including
the added comma) could concatenate no more than 400 rows before failing. So this follow-
ing query (assuming you had a user-defi ned aggregate, or UDA, in SQL Server 2005 named
dbo.Concat2005) would fail.
USE AdventureWorks;

GO

SELECT dbo.Concat(EmailAddress)

FROM Person.Contact;

USE AdventureWorks;

GO

SELECT dbo.Concat(EmailAddress)

FROM Person.Contact;

165 6/30/2008 2:10:19 PM

166

C04625587.indd 166
Introducing SQL Server 2008

But SQL Server 2008 comes to the rescue, and you can now code the MaxByteSize named
parameter of the SqlUserDefi nedAggregate attribute to be a value of -1, which translates to
“up to 2 GB.” For this example, I have included the entire UDA codebase.

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text;

namespace debetta

{

 [Serializable]

 [SqlUserDefinedAggregate(Format.UserDefined, MaxByteSize = -1)]

 public struct Concat: IBinarySerialize

 {

 StringBuilder _sb;

 public void Init()

 {

 _sb = new StringBuilder(System.String.Empty);

 }

 public void Accumulate(SqlString Value)

 {

 if (Value.IsNull == false && Value.Value.Trim().Length > 0)

 _sb.Append(Value.Value + “,”);

 }

 public void Merge(Concat Group)

 {

 if (Group._sb.ToString().Length > 0)

 _sb.Append(Group._sb.ToString()+ “,”);

 }

 public SqlString Terminate()

 {

 return new SqlString(_sb.ToString());

 }

 public void Read(System.IO.BinaryReader r)

 {

 _sb = new StringBuilder(r.ReadString());

 }

 public void Write(System.IO.BinaryWriter w)

 {

 w.Write(_sb.ToString());

 }

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text;

namespace debetta

{

 [Serializable]

 [SqlUserDefinedAggregate(Format.UserDefined, MaxByteSize = -1)]

 public struct Concat: IBinarySerialize

 {

 StringBuilder _sb;

 public void Init()

 {

 _sb = new StringBuilder(System.String.Empty);

 }

 public void Accumulate(SqlString Value)

 {

 if (Value.IsNull == false && Value.Value.Trim().Length > 0)

 _sb.Append(Value.Value + “,”);

 }

 public void Merge(Concat Group)

 {

 if (Group._sb.ToString().Length > 0)

 _sb.Append(Group._sb.ToString()+ “,”);

 }

 public SqlString Terminate()

 {

 return new SqlString(_sb.ToString());

 }

 public void Read(System.IO.BinaryReader r)

 {

 _sb = new StringBuilder(r.ReadString());

 }

 public void Write(System.IO.BinaryWriter w)

 {

 w.Write(_sb.ToString());

 }
 }

}

 }

}

6/30/2008 2:10:19 PM

C04625587.indd 167
Chapter 4 Programmability 167

Now our new query using our new UDA in SQL Server 2008 works:

USE AdventureWorks;

GO

SELECT dbo.Concat(EmailAddress)

FROM Person.Contact;

For the record, the resulting string is 570,812 characters long, or 1,141,624 bytes, and the
query runs in about 150 milliseconds.

UDAs also offer a new ability—multiple parameter input on the Accumulate method. In other
words, I can aggregate against one or more values, such as variables, or I can aggregate
against multiple columns. Examine the following UDA that fi nds the max MONEY value in
two different columns.

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text;

namespace debetta

{

 [Serializable]

 [SqlUserDefinedAggregate(Format.Native, IsInvariantToNulls = true,

 IsInvariantToOrder = false, IsInvariantToDuplicates = true)]

 public struct MoneyMaxDuo

 {

 public SqlMoney m_Result;

 public void Init()

 {

 m_Result = SqlMoney.Null;

 }

 public void Accumulate(SqlMoney p1, SqlMoney p2)

 {

 SqlMoney ptemp = SqlMoney.Null;

USE AdventureWorks;

GO

SELECT dbo.Concat(EmailAddress)

FROM Person.Contact;

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text;

namespace debetta

{

 [Serializable]

 [SqlUserDefinedAggregate(Format.Native, IsInvariantToNulls = true,

 IsInvariantToOrder = false, IsInvariantToDuplicates = true)]

 public struct MoneyMaxDuo

 {

 public SqlMoney m_Result;

 public void Init()

 {

 m_Result = SqlMoney.Null;

 }

 public void Accumulate(SqlMoney p1, SqlMoney p2)

 {

 SqlMoney ptemp = SqlMoney.Null;
 if (p1.IsNull && p2.IsNull)

 return;

 if (p1.IsNull && p2.IsNull)

 return;

6/30/2008 2:10:20 PM

168

C04625587.indd 168
Introducing SQL Server 2008

 if (p1.IsNull)

 ptemp = p2;

 else if (p2.IsNull)

 ptemp = p1;

 else

 ptemp = (p1 > p2) ? p1 : p2;

 if (m_Result.IsNull | ptemp > m_Result)

 m_Result = ptemp;

 }

 public void Merge(MoneyMaxDuo MergeObject)

 {

 if ((m_Result.IsNull) | (!MergeObject.Terminate().IsNull

 & m_Result < MergeObject.Terminate()))

 m_Result = MergeObject.Terminate();

 }

 public SqlMoney Terminate()

 {

 return m_Result;

 }

 }

}

Notice that the Accumulate method has two parameters defi ned. When creating the aggre-
gate in T-SQL, you must defi ne both parameters, as shown here:

CREATE AGGREGATE dbo.MoneyMaxDuo (@val1 MONEY, @val2 MONEY)

RETURNS MONEY

EXTERNAL NAME MyCodeLibrary.[debetta.MoneyMaxDuo]

And then you can use it as follows:

DECLARE @T TABLE (Category CHAR(1), Price1 MONEY, Price2 MONEY)

INSERT INTO @T

VALUES (‘A’, 1, 2), (‘A’, 3, 2), (‘A’, 5, 7), (‘B’, 8, 9), (‘B’, 10, 6)

SELECT dbo.MoneyMaxDuo(Price1, Price2)

FROM @T;

-- Returns 10

 if (p1.IsNull)

 ptemp = p2;

 else if (p2.IsNull)

 ptemp = p1;

 else

 ptemp = (p1 > p2) ? p1 : p2;

 if (m_Result.IsNull | ptemp > m_Result)

 m_Result = ptemp;

 }

 public void Merge(MoneyMaxDuo MergeObject)

 {

 if ((m_Result.IsNull) | (!MergeObject.Terminate().IsNull

 & m_Result < MergeObject.Terminate()))

 m_Result = MergeObject.Terminate();

 }

 public SqlMoney Terminate()

 {

 return m_Result;

 }

 }

}

CREATE AGGREGATE dbo.MoneyMaxDuo (@val1 MONEY, @val2 MONEY)

RETURNS MONEY

EXTERNAL NAME MyCodeLibrary.[debetta.MoneyMaxDuo]

DECLARE @T TABLE (Category CHAR(1), Price1 MONEY, Price2 MONEY)

INSERT INTO @T

VALUES (‘A’, 1, 2), (‘A’, 3, 2), (‘A’, 5, 7), (‘B’, 8, 9), (‘B’, 10, 6)

SELECT dbo.MoneyMaxDuo(Price1, Price2)

FROM @T;

-- Returns 10
SELECT Category, dbo.MoneyMaxDuo(Price1, Price2)

FROM @T

GROUP BY Category;

-- Returns

-- A 7

-- B 10

SELECT Category, dbo.MoneyMaxDuo(Price1, Price2)

FROM @T

GROUP BY Category;

-- Returns

-- A 7

-- B 10

6/30/2008 2:10:20 PM

C04625587.indd 169
Chapter 4 Programmability 169

Note that both parameters are required, so if you only need to pass one, use NULL for the
other parameter; and be sure that your CLR code accommodates NULL parameter values.

Large User-Defi ned Types

Like UDAs, user-defi ned types (UDTs) also support the 2 GB fi gure, in this case for storage.
As done with UDAs, the attribute that defi nes the type of SQL Server object, in this case
SqlUserDefi nedType, sets the MaxByteSize named parameter to a value of -1 to specify up to
2 GB of data is supported, as shown here in this abridged code snippet:

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedType

 (Format.UserDefined, MaxByteSize = -1)]

public class EncryptedString : INullable, IBinarySerialize

{

...

}

When defi ned as such, the UDT is conceptually like VARBINARY(MAX), and for down-level
clients, it is converted to VARBINARY(MAX) or IMAGE as appropriate.

Null Support

Passing parameters with null values into CLR-based code meant that you always needed to
do a check to see if the value was indeed null and, if so, take appropriate action, as shown
here:

[Microsoft.SqlServer.Server.SqlFunction]

public static SqlInt32 SquareWithNull(SqlInt16 input)

{

 if (input.IsNull == true)

 return SqlInt32.Null;

 return input * input;

}

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedType

 (Format.UserDefined, MaxByteSize = -1)]

public class EncryptedString : INullable, IBinarySerialize

{

...

}

[Microsoft.SqlServer.Server.SqlFunction]

public static SqlInt32 SquareWithNull(SqlInt16 input)

{

 if (input.IsNull == true)

 return SqlInt32.Null;

 return input * input;

}

A call to this user-defi ned function in SQL Server may pass a null value into the method,
so the code checks to see if the parameter has a null value. If true, it returns a null value.
Otherwise, the method returns the square of the parameter value. In SQL Server 2008,

6/30/2008 2:10:20 PM

170

C04625587.indd 170
Introducing SQL Server 2008

however, you can now use the .Net Nullable types and do away with the extra check for each
incoming parameter, as shown here:

[Microsoft.SqlServer.Server.SqlFunction]

public static Nullable<Int32> SquareWithNull(Nullable<Int16> input)

{

 return input * input;

}

Order Awareness

Table-valued user-defi ned functions have another new feature that allows you to specify the
order of the results of CLR-based table-valued user-defi ned functions (UDFs). If you know
that your UDF always returns results in a particular order, then you can optimize the UDF
to take advantage of that and not do the extra sort work when selecting the results in that
order.

To demonstrate, I will use the following UDF, which is deployed to the AdventureWorksLT
database using Visual Studio.

public partial class UserDefinedFunctions

{

 [SqlFunction (FillRowMethodName = “FillRow”,TableDefinition = @”TheNumber int”)]

 public static IEnumerable fnList()

 {

 return new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 }

 public static void FillRow(Object obj, out SqlInt32 TheNumber)

 {

 TheNumber = (Int32)obj;

 }

}

The database now has a function named fnList, which will return a simple table with a single
column, and 10 rows, in order from 0 to 9.

Now because you already know the order of the returned data, you can optimize the call. I’ll
add another UDF using the same underlying CLR method, as follows.

[Microsoft.SqlServer.Server.SqlFunction]

public static Nullable<Int32> SquareWithNull(Nullable<Int16> input)

{

 return input * input;

}

public partial class UserDefinedFunctions

{

 [SqlFunction (FillRowMethodName = “FillRow”,TableDefinition = @”TheNumber int”)]

 public static IEnumerable fnList()

 {

 return new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 }

 public static void FillRow(Object obj, out SqlInt32 TheNumber)

 {

 TheNumber = (Int32)obj;

 }

}

USE AdventureWorksLT

GO

CREATE FUNCTION [dbo].[fnList2]()

USE AdventureWorksLT

GO

CREATE FUNCTION [dbo].[fnList2]()

6/30/2008 2:10:20 PM

C04625587.indd 171
Chapter 4 Programmability 171

RETURNS TABLE (

 [TheNumber] [int] NULL

) WITH EXECUTE AS CALLER

ORDER ([TheNumber])

AS

EXTERNAL NAME [OrderTVF].[UserDefinedFunctions].[fnList]

GO

The ORDER clause in the UDF defi nition tells the optimizer that the UDF returns its data in
this particular order. And if the request for the data from the UDF is ordered the same, it will
not need to sort (although it will check the order as it streams the data out).

Examine the following two SELECT statements.

SELECT TOP 10 * FROM dbo.fnList() ORDER By TheNumber;

SELECT TOP 10 * FROM dbo.fnList2() ORDER By TheNumber;

The results of each are identical, as you probably expected, but their execution plans are dif-
ferent, as shown here.

RETURNS TABLE (

 [TheNumber] [int] NULL

) WITH EXECUTE AS CALLER

ORDER ([TheNumber])

AS

EXTERNAL NAME [OrderTVF].[UserDefinedFunctions].[fnList]

GO

SELECT TOP 10 * FROM dbo.fnList() ORDER By TheNumber;

SELECT TOP 10 * FROM dbo.fnList2() ORDER By TheNumber;
FIGURE 4-1 Typical and order optimized execution plans

The fi rst execution plan shows the optimizer uses a sort operator to ensure the data is in or-
der. The second execution plan seems more complicated, but because it is not using a sort

6/30/2008 2:10:20 PM

C0462558
172 Introducing SQL Server 2008

operator, it executes faster. On a more complicated example, I did some performance testing
and found that the ORDER-optimized UDF ran faster, but how much faster varied based on
the number of rows returned. As the number of rows returned decreased (by decreasing the
TOP value), the difference in speed increased. So when I returned 100 out of 1000 rows, the
speed difference was about three times faster for the ORDER-optimized UDF. But when I re-
turned 10 of 1000 rows, the difference in speed was almost an order of magnitude.

System CLR Types

The CLR infrastructure now has system CLR types, which include the new HIERARCHYID
data type, the new GEOMETRY and GEOGRAPHY spatial data types, and the Policy-Based
Management features. The new system CLR data types are implemented in .NET yet do not
require the CLR Enabled option to be turned on in order to use them.

SQL Server Management Studio Enhancements

Although not technically a programming topic, a number of new enhancements in SSMS di-
rectly relate to development work productivity.

Intellisense

Most .Net developers are already familiar with the awesome ability of Intellisense. There are
even third-party products that incorporate Intellisense into products such as Visual Studio
and SSMS. SQL developers have been asking for this latest feature for many years. And
Microsoft has delivered.

By examining the options for Intellisense, you can get a better idea of what features it really
offers. Figure 4-2 shows the Intellisense options (located under Text Editor, Transact-SQL, and
then Advanced in the nodes) in the Options dialog box.

If Intellisense is enabled, then you can have it also auto list members and give parameter in-
formation (as shown in Figure 4-3). If you prefer only to invoke such features when you want,
then you can turn these off and easily invoke using Ctrl+J to auto list members or Ctrl+Space
to complete unique member names, or list members if not unique.
7.indd 172 6/30/2008 2:10:20 PM

C04625587.indd 173
Chapter 4 Programmability 173

FIGURE 4-2 Intellisense settings
FIGURE 4-3 Statement Completion options

6/30/2008 2:10:21 PM

174

C04625587.indd 174
Introducing SQL Server 2008

Once in effect, you can see the benefits right away. Figure 4-4 shows the auto complete kick-
ing in after typing the period in “HumanResources.” You can see a list of valid table and views
from the HumanResources schema in the list.

FIGURE 4-4 Intellisense in action

The list shows other objects, such as functions, columns, and so on, depending on the con-
text in which it invokes or is invoked. But that’s not all Intellisense can do….

Error List

Not only will the T-SQL editor now outline the statements, but it will also display a list of er-
rors that it sees in the code. The new Error List window shows you two kinds of errors: syntax
and reference. Double-clicking the error in the Error List will bring you to the code in ques-
tion in the T-SQL editor. Sometimes a simple mistake shows up as multiple errors, as shown in
Figure 4-5.
6/30/2008 2:10:22 PM

C04625587.indd 175
Chapter 4 Programmability 175

FIGURE 4-5 The Error List in SQL Server Management Studio

The first error is simply that the name of the table is Department and not Departments. But
the typo Department ID (instead of DepartmentID) shows up as two errors. The first is a ref-
erence error, because Department is not a column in the table. The second is a remnant of
the first: Because there is an extra “word” in the code, it thinks the code is really trying to se-
lect from the Department column with an alias of ID, at which point it expects a comma and
instead it finds the word AS.

Service Broker Enhancements in SSMS

Like SQL Server 2005, you can view Service Broker objects using SSMS. Each database node
in Object Explorer now has a Service Broker child node, which in turn has child nodes for
each of the Service Broker object types, as shown in Figure 4-6.
6/30/2008 2:10:22 PM

176

C04625587.indd 1
Introducing SQL Server 2008

FIGURE 4-6 Service Broker in Object Explorer

However, new to SQL Server 2008, you can also right-click on a Service Broker object and
take action or view its properties. For example, you can right-click Services and choose to
create a new initiator or target service. This action will result in a new query window open-
ing, with a T-SQL template for the selected object. Coding Service Broker just got easier. Also,
from the context menu, you can also choose to view properties of a Service Broker object, as
shown in Figure 4-7.
FIGURE 4-7 Viewing a Service Broker queue’s properties

76 6/30/2008 2:10:22 PM

C04625587.indd 177
Chapter 4 Programmability 177

PowerShell

In case you didn’t know, Windows PowerShell is a command-line shell and scripting language
that is quite the hot topic nowadays. One of the other cool features that SQL Server 2008 in-
cludes is PowerShell support for SQL Server, and SSMS can be used to access PowerShell right
from the Object Explorer. For example, you can navigate to AdventureWorksLT database and
right-click on the Tables node. Choose Start PowerShell from the context menu, and you will
see the SQL PowerShell (SQLPS), as shown in Figure 4-8.

FIGURE 4-8 SQL PowerShell

Notice how the path shown in the prompt is the same as the node hierarchy in Object
Explorer in SSMS (server name, instance name, Databases, database name, Tables). From here,
you can issue a simple cmdlet such as Get-ChildItem, and you will see these results.

FIGURE 4-9 Listing tables in SQL PowerShell
Let’s say I need to get rid of that table named Peter. To do so, I simply run the following
cmdlet.

Remove-Item dbo.PeterRemove-Item dbo.Peter

6/30/2008 2:10:23 PM

C04625587
178 Introducing SQL Server 2008

You can fi lter the list shown to limit to those tables in the SalesLT schema, as follows.

Get-ChildItem | where {$_.Schema -eq “SalesLT”}

You can also navigate using the Set-Location cmdlet (it works just like CD does in Command
prompt). For example, to move up a level:

Set-Location ..

To move down to the Views node:

Set-Location Views

But that is only scratching the surface. You can use variables, iterate through properties,
interact with the fi le system, and even script objects. SQL Server also includes snap-ins for
PowerShell, such as Invoke-Sqlcmd, which works like Sqlcmd to execute T-SQL or XQuery
script. You can also manage SQL Mail, SQL Agent, Service Broker, and even the new Policy-
Based Management from PowerShell. The usefulness of PowerShell seems to have no
bounds.

More Info If you want to learn more about it, you can visit Microsoft’s TechNet Web site, and
you can also read the “SQL Server PowerShell Overview” topic in SQL Server Books Online.

Summary

There are some phenomenal new features available in T-SQL in SQL Server 2008. All of them
are designed to make your programming experience better, to give you more fl exibility when
writing code in T-SQL, and to increase performance.

Get-ChildItem | where {$_.Schema -eq “SalesLT”}

Set-Location ..

Set-Location Views
.indd 178 6/30/2008 2:10:23 PM

C05625587.in
Chapter 5

Storage

Introduction

SQL Server 2008 has added two new storage-related features that can dramatically reduce
the storage requirements of sparsely populated tables and create targeted indexes using cri-
teria that can not only reduce the index storage requirements but increase performance for
both read and modify operations.

Sparse Columns

Not too long ago, I was working with a client who was implementing software using SQL
Server 2005 Express. The objective was to deliver sales data to various clients who were in
turn doing some analysis of the data. There was one problem, however, in that some of the
data files to be delivered topped out at more than 4 gigabytes (GBs), which is the maximum
size allowed for SQL Server 2005 Express Edition.

The problem was that there were a lot of null values in the data that were taking up a lot of
room. Changing the relational model to a key-value pair solution shrank the data files quite
a bit but slowed the querying of the data. A colleague solved the problem by implementing
a user-defined data type and some well-written C#-based user-defined functions and stored
procedures.

The solution to this problem would have been almost infinitely simpler, however, using sparse
columns.

What Is a Sparse Column?

A sparse column is meant to be used when the column will contain a majority of null values.
It is optimized for null storage and actually uses no space for null values. There is a trade-off,
however, in that non-null values require extra space for storage.
179

Null values require no space when being stored.

Non-null values require extra bytes of storage space.

Fixed-length and precision-dependent types require 4 extra bytes.

Variable-length types require 2 extra bytes.

dd 179 6/30/2008 2:10:50 PM

180

C05625587.indd 180
Introducing SQL Server 2008

If the column contains few null values, then using a sparse column is not benefi cial. If, how-
ever, there were few non-null values in that column, then a sparse column could considerably
reduce your storage requirements.

So, for example, let’s say we have the following table.

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] INT PRIMARY KEY,

 [Name] VARCHAR(100),

 [LocationCount] INT NULL

)

And let’s say that there are 1,000 customers stored in that table, but only 200 of them have
reported how many locations they have. Although the [LocationCount] value will be null for
800 of these rows, the column still requires 4,000 bytes of storage (1,000 x 4 bytes for INT).

If you change that column to a sparse column, however, those fi gures change.

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] INT PRIMARY KEY,

 [Name] VARCHAR(100),

 [LocationCount] INT NULL SPARSE

)

For the [LocationCount] column to use less space, at least 50 percent of its values need to be
null. In this case, 80 percent of the values are null. The remaining 200 non-null values now
take up 1,600 bytes (200 x [4 + 4 bytes overhead]), and the 800 null values require no space,
so the total amount of space used for that column drops from 4,000 bytes to 1,600 bytes—a
savings of 60 percent. Extrapolate this to more columns and more rows and, all of a sudden,
your database storage requirements drop signifi cantly.

When to Use Sparse Columns

Sparse columns denormalize data. How you implement sparse columns will determine the
how much positive impact it will have on performance. I ran some performance tests on two

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] INT PRIMARY KEY,

 [Name] VARCHAR(100),

 [LocationCount] INT NULL

)

CREATE TABLE [dbo].[Customer]

(

 [CustomerID] INT PRIMARY KEY,

 [Name] VARCHAR(100),

 [LocationCount] INT NULL SPARSE

)

tables, shown here:

6/30/2008 2:10:50 PM

C05625587.indd 181
Chapter 5 Storage 181

CREATE TABLE [dbo].[TableTest1]

(

 [TableID] INT NOT NULL,

 [CharCol] CHAR(20) NULL,

 [IntCol] INT NULL

)

CREATE TABLE [dbo].[TableTest2]

(

 [TableID] INT NOT NULL,

 [CharCol] CHAR(20) SPARSE NULL,

 [IntCol] INT SPARSE NULL

)

I tested the following scenarios:

Always inserting a value into the sparse columns

Never inserting a value into the sparse columns

Inserting mostly non-null values into the sparse columns (in varying percentages)

Inserting mostly null values into the sparse columns (in varying percentages)

As you may have surmised, when a lot of non-null data is inserted, inserting into the table
without sparse columns performed better than inserting into the table with the sparse col-
umns; the table without sparse columns also required less storage space. As the amount of
null data increased, however, inserting into the table with sparse columns resulted in better
performance and required less storage for the table with the sparse columns.

So when should you use a sparse column? You must look at the frequency of null in that
column. If the column will contain more null values than non-null values, it is a candidate to
be a sparse column. For example, a fl attened table will often result in columns that contain
many null values.

I recently worked on a project where an object-relational mapping (ORM) solution was being
used, and the domain model contained several concrete classes that inherited from a single
abstract class. This scenario also lends itself to using sparse columns.

To exemplify such a scenario, let’s start with an abstract class named Person and four con-

CREATE TABLE [dbo].[TableTest1]

(

 [TableID] INT NOT NULL,

 [CharCol] CHAR(20) NULL,

 [IntCol] INT NULL

)

CREATE TABLE [dbo].[TableTest2]

(

 [TableID] INT NOT NULL,

 [CharCol] CHAR(20) SPARSE NULL,

 [IntCol] INT SPARSE NULL

)

crete subclasses named Student, Professor, StaffMember, and Benefactor, as shown in
Figure 5-1.

6/30/2008 2:10:50 PM

182

C05625587.indd 182
Introducing SQL Server 2008

Benefactor
*AmountDonated
*DonationTarget

Student
*GraduationYear

*MajorCode

StaffMember
*StaffDepartmentCode

Professor

*AcademicDepartmentCode
*CampusOffice

Person
*ID

*FirstName
*LastName

*PhoneNumber
*Email

FIGURE 5-1 Diagram of an abstract class named Person and four concrete subclasses

There are several ways to implement the relational model for this solution. The fi rst is to rep-
resent each class, abstract or concrete, as a table in the database and to have the concrete
class tables each have a foreign key to the abstract class table, as shown in the following
listing.

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

)

GO

CREATE TABLE Benefactor

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , AmountDonated MONEY NOT NULL

 , DonationTarget VARCHAR(100) NOT NULL

)

GO

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

)

GO

CREATE TABLE Benefactor

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , AmountDonated MONEY NOT NULL

 , DonationTarget VARCHAR(100) NOT NULL

)

GO
CREATE TABLE StaffMember

(

 PersonID INT NOT NULL PRIMARY KEY

CREATE TABLE StaffMember

(

 PersonID INT NOT NULL PRIMARY KEY

6/30/2008 2:10:51 PM

C05625587.indd 183
Chapter 5 Storage 183

 FOREIGN KEY REFERENCES Person(PersonID)

 , StaffDepartmentCode CHAR(5) NOT NULL

)

GO

CREATE TABLE Professor

(

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , AcademicDepartmentCode CHAR(5) NOT NULL

 , CampusOffice VARCHAR(25) NOT NULL)

GO

CREATE TABLE Student

(

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , GraduationYear SMALLINT NOT NULL

 , MajorCode CHAR(4) NOT NULL

)

GO

The preceding implementation is the most normalized. Others, however, may prefer to rep-
resent each concrete class as a table and to implement the abstract properties multiple times
(once for each concrete class), as shown in the following listing.

CREATE TABLE Benefactor

 BenefactorID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , AmountDonated MONEY NOT NULL

 , DonationTarget VARCHAR(100) NOT NULL

)

GO

CREATE TABLE StaffMember

(

 StaffMemberID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 FOREIGN KEY REFERENCES Person(PersonID)

 , StaffDepartmentCode CHAR(5) NOT NULL

)

GO

CREATE TABLE Professor

(

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , AcademicDepartmentCode CHAR(5) NOT NULL

 , CampusOffice VARCHAR(25) NOT NULL)

GO

CREATE TABLE Student

(

 PersonID INT NOT NULL PRIMARY KEY

 FOREIGN KEY REFERENCES Person(PersonID)

 , GraduationYear SMALLINT NOT NULL

 , MajorCode CHAR(4) NOT NULL

)

GO

CREATE TABLE Benefactor

 BenefactorID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , AmountDonated MONEY NOT NULL

 , DonationTarget VARCHAR(100) NOT NULL

)

GO

CREATE TABLE StaffMember

(

 StaffMemberID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL
 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , StaffDepartmentCode CHAR(5) NOT NULL

)

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , StaffDepartmentCode CHAR(5) NOT NULL

)

6/30/2008 2:10:51 PM

184

C05625587.indd 184
Introducing SQL Server 2008

GO

CREATE TABLE Professor

(

 ProfessorID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , AcademicDepartmentCode CHAR(5) NOT NULL

 , CampusOffice VARCHAR(25) NOT NULL

)

GO

CREATE TABLE Student

(

 StudentID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , GraduationYear SMALLINT NOT NULL

 , MajorCode CHAR(4) NOT NULL

)

GO

Still others may prefer to represent all concrete classes using a single table that has all fi elds
from all the concrete classes. This particular implementation lends itself to using sparse col-
umns, as shown in the following listing.

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY NULL

 , DonationTarget VARCHAR(100) NULL

 , StaffDepartmentCode CHAR(5) NULL

GO

CREATE TABLE Professor

(

 ProfessorID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , AcademicDepartmentCode CHAR(5) NOT NULL

 , CampusOffice VARCHAR(25) NOT NULL

)

GO

CREATE TABLE Student

(

 StudentID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , GraduationYear SMALLINT NOT NULL

 , MajorCode CHAR(4) NOT NULL

)

GO

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY NULL

 , DonationTarget VARCHAR(100) NULL

 , StaffDepartmentCode CHAR(5) NULL
 , AcademicDepartmentCode CHAR(5) NULL

 , CampusOffice VARCHAR(25) NULL

 , GraduationYear SMALLINT NULL

 , MajorCode CHAR(4) NULL

)

 , AcademicDepartmentCode CHAR(5) NULL

 , CampusOffice VARCHAR(25) NULL

 , GraduationYear SMALLINT NULL

 , MajorCode CHAR(4) NULL

)

6/30/2008 2:10:51 PM

C05625587.indd 18
Chapter 5 Storage 185

Tip You will want to ensure that you have the required data for the particular type of person—
perhaps something like this CHECK CONSTRAINT.

ALTER TABLE Person

ADD CONSTRAINT chkPersonType CHECK

((PersonType = 1 AND AmountDonated IS NOT NULL AND DonationTarget IS NOT NULL)

 OR (PersonType = 2 AND StaffDepartmentCode IS NOT NULL)

 OR (PersonType = 3 AND AcademicDepartmentCode IS NOT NULL

 AND CampusOffice IS NOT NULL)

 OR (PersonType = 4 AND GraduationYear IS NOT NULL AND MajorCode IS NOT NULL)

)

You could also implement several different check constraints or even a trigger to ensure data
integrity.

Each of the implementations has certain advantages and disadvantages in regards to design,
performance, normal form, and so on—all of which can be debated for or against. Of the
three designs, however, the latter design lends itself to use sparse columns, as shown here.

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

)

You also could have altered each of the columns using an ALTER TABLE statement. For ex-
ample, to make the DonationAmount column be sparse, you could execute the following.

ALTER TABLE Person

ADD CONSTRAINT chkPersonType CHECK

((PersonType = 1 AND AmountDonated IS NOT NULL AND DonationTarget IS NOT NULL)

 OR (PersonType = 2 AND StaffDepartmentCode IS NOT NULL)

 OR (PersonType = 3 AND AcademicDepartmentCode IS NOT NULL

 AND CampusOffice IS NOT NULL)

 OR (PersonType = 4 AND GraduationYear IS NOT NULL AND MajorCode IS NOT NULL)

)

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

)

ALTER TABLE Person

ALTER COLUMN DonationAmount ADD SPARSE

ALTER TABLE Person

ALTER COLUMN DonationAmount ADD SPARSE

5 6/30/2008 2:10:51 PM

C05625587
186 Introducing SQL Server 2008

You can also turn off the sparse feature for a column as follows (again, using
DonationAmount as the example):

ALTER TABLE Person

ALTER COLUMN DonationAmount DROP SPARSE

Note Altering a column to be sparse or non-sparse requires that the storage layer restore the
data in the sparse/non-sparse format. Therefore it is advisable to either set the sparse attribute
of a column when creating the table or only to alter the sparse attribute of a column on a table
with little or no data.

Regardless of the method you use to create the sparse columns in the table, the sparse col-
umn solution has a distinct advantage over the other two designs: It will not only require less
space to store the data but will have better overall performance than the other two proposed
models. And it also allows you to use the column sets feature (discussed later in this section).

Sparse Column Rules and Regulations

There are a number of details that you should keep in mind when designing a table with
sparse columns. The most obvious rule is that the column must be nullable because the col-
umn will contain mostly null values. You also cannot assign a default or bind any rules to a
sparse column, nor can you use IDENTITY or ROWGUIDCOL on said column. If the column
has any of these features or attributes, it cannot be altered to be a sparse column.

Sparse columns support all data types except GEOGRAPHY, GEOMETRY, TEXT, NTEXT, IM-
AGE, TIMESTAMP, user-defi ned data types, and VARBINARY(MAX) that are FILESTREAM.
Computed columns cannot be marked as sparse, although you can use a sparse column in
the calculation of a computed column.

Sparse columns cannot be directly part of a clustered index or unique primary key index, nor
can they be used as a partition key of a clustered index or heap. They can, however, be used
as the partition key of a nonclustered index.

A table normally has a row size limit of 8,060 bytes. When using sparse columns in a table,
this row size limit is reduced to 8,018 bytes. You can have as many as 30,000 columns in a

ALTER TABLE Person

ALTER COLUMN DonationAmount DROP SPARSE
table with sparse columns (yes, you read that correctly), as long as each row is less than the
8,018 byte size limit. You can also have 30,000 statistics and 1,000 indexes defi ned in a table
with sparse columns.

.indd 186 6/30/2008 2:10:52 PM

C05625587.indd
Chapter 5 Storage 187

Note Variable length data (varchar, varbinary, and so on) relaxes the row size restriction, be-
cause variable length data can be stored off-row. This relaxation of the row size restriction ap-
plies to tables both without and with sparse columns. See the “Row-Overfl ow Data Exceeding 8
KB” topic in SQL Server Books Online for more details.

Here are a few other items of note:

A table with sparse columns cannot be compressed.

Table types cannot use sparse columns.

Sparse columns can be used with transactional replication, change tracking, and
changed data capture but cannot be used with merge replication.

Column Sets

When using the Person table with sparse columns, what if you wanted to return only the
fi elds for a particular person type, such as a student? One option would be to use a view, as
shown here.

CREATE VIEW vwStudent

AS

 SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

 , GraduationYear

 , MajorCode

 FROM Person

 WHERE PersonType = 4

GO

The other option, however, is to use a column set that will return the non-null sparse columns
composed as XML. To do this, we need to add another column to the table, as shown here.

CREATE TABLE Person

CREATE VIEW vwStudent

AS

 SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

 , GraduationYear

 , MajorCode

 FROM Person

 WHERE PersonType = 4

GO

CREATE TABLE Person
(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 187 6/30/2008 2:10:52 PM

C05625587
188 Introducing SQL Server 2008

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

 , Details XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

Note You cannot add an XML column set column to a table that already has sparse columns.

Note A column set column is similar to a computed column and does not use any physical stor-
age space on the disk.

There can be only one column set column per table, and the syntax will always be the
following:

<column_name> XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

To insert a row of data, you could then execute the following statement, for example.

INSERT INTO Person

 (PersonID, FirstName, LastName, PhoneNumber, Email, PersonType,

 GraduationYear, MajorCode)

VALUES (1, ‘Jane’, ‘Doe’, ‘555-3434’, ‘jane.doe@college.edu’, 4, 2008, ‘CMSC’)

And to see the effects of this, you can then issue the following statement.

SELECT * FROM Person

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

 , Details XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

<column_name> XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

INSERT INTO Person

 (PersonID, FirstName, LastName, PhoneNumber, Email, PersonType,

 GraduationYear, MajorCode)

VALUES (1, ‘Jane’, ‘Doe’, ‘555-3434’, ‘jane.doe@college.edu’, 4, 2008, ‘CMSC’)

SELECT * FROM Person
What you get back, however, might be a little surprising.

.indd 188 6/30/2008 2:10:52 PM

C05625587.indd
Chapter 5 Storage 189

PersonID

First

Name

Last

Name

Phone

Number Email

Person

Type Details

1 Jane Doe 555-3434 jane.doe@college.edu 4 <GraduationYear>

 2008

</GraduationYear>

<MajorCode>

 CMSC

</MajorCode>

You will notice that none of the sparse columns are returned, and, instead, all non-null sparse
column values are composed as XML and returned in the column set. This doesn’t mean you
can no longer return sparse columns, but, rather, you simply need to explicitly list the sparse
columns in the SELECT statement in order to return them.

Note Column sets provide yet another reason not to use SELECT * FROM in production code.

Another very cool thing is that the column set can be modifi ed. For example, examine the
following code.

INSERT INTO Person

 (PersonID, FirstName, LastName, PhoneNumber, Email, PersonType, Details)

VALUES (2, ‘John’, ‘Doe’, ‘555-1212’, ‘john.doe@college.edu’, 4,

 ‘<GraduationYear>2009</GraduationYear><MajorCode>ECON</MajorCode>’)

You are not seeing a typographic error. You can pass the sparse column values in as XML in
the INSERT statement, and it will insert the values in the sparse columns. I’ve implemented
a similar feature using views instead of triggers, and I can tell you fi rsthand, column sets are
so very much better. You can also use the column set to update the sparse column values, as
shown here.

UPDATE Person

SET Details = ‘<GraduationYear>2009</GraduationYear><MajorCode>LING</MajorCode>’

WHERE PersonID = 2

PersonID

First

Name

Last

Name

Phone

Number Email

Person

Type Details

INSERT INTO Person

 (PersonID, FirstName, LastName, PhoneNumber, Email, PersonType, Details)

VALUES (2, ‘John’, ‘Doe’, ‘555-1212’, ‘john.doe@college.edu’, 4,

 ‘<GraduationYear>2009</GraduationYear><MajorCode>ECON</MajorCode>’)

UPDATE Person

SET Details = ‘<GraduationYear>2009</GraduationYear><MajorCode>LING</MajorCode>’

WHERE PersonID = 2
You should note that all sparse columns are modifi ed when using the column set to insert or
update, so the statement above is not simply updating the GraduationYear and MajorCode

 189 6/30/2008 2:10:53 PM

C05625587
190 Introducing SQL Server 2008

columns but also updating all the other sparse columns to null. So if you execute the
following:

UPDATE Person

SET Details = ‘<MajorCode>EENG</MajorCode>’

WHERE PersonID = 2

It would set MajorCode to EENG, and all other sparse columns, including the GraduationYear,
to null.

Note If the CHECK constraint shown earlier in the section were implemented, this statement
would fail the check and throw an exception.

You’ve seen that when the table has a column set, the default set of columns (SELECT * op-
erations) does not contain the sparse columns. This also holds true when inserting data into
the table. Examine the following code.

INSERT INTO Person

VALUES (3, ‘Jack’, ‘Doe’, ‘555-5656’, ‘jack.doe@college.edu’, 4,

 ‘<GraduationYear>2010</GraduationYear><MajorCode>LING</MajorCode>’)

Because the Person table has a column set, its default columns do not include the sparse
columns; it is semantically equivalent to listing the non-sparse columns. That being said, I
recommend always being explicit in your code.

Note You cannot modify both the column set and the sparse columns in a single INSERT or
UPDATE statement. For example, the following is not allowed.

UPDATE Person

SET Details = ‘<MajorCode>EENG</MajorCode>’

 , GraduationYear = 2009

WHERE PersonID = 2

Executing this query would give this result:

Msg 360, Level 16, State 1, Line 1

UPDATE Person

SET Details = ‘<MajorCode>EENG</MajorCode>’

WHERE PersonID = 2

INSERT INTO Person

VALUES (3, ‘Jack’, ‘Doe’, ‘555-5656’, ‘jack.doe@college.edu’, 4,

 ‘<GraduationYear>2010</GraduationYear><MajorCode>LING</MajorCode>’)

UPDATE Person

SET Details = ‘<MajorCode>EENG</MajorCode>’

 , GraduationYear = 2009

WHERE PersonID = 2

Msg 360, Level 16, State 1, Line 1
The target column list of an INSERT, UPDATE, or MERGE statement cannot contain both

a sparse column and the column set that contains the sparse column. Rewrite the

statement to include either the sparse column or the column set, but not both.

And this restriction applies to all sparse columns, regardless of their use in the individual rows.

The target column list of an INSERT, UPDATE, or MERGE statement cannot contain both

a sparse column and the column set that contains the sparse column. Rewrite the

statement to include either the sparse column or the column set, but not both.

.indd 190 6/30/2008 2:10:53 PM

C05625587.indd
Chapter 5 Storage 191

Filtered Indexes

In addition to sparse columns and column sets, two more related technological advances
make their debut in SQL Server 2008: filtered indexes and filtered statistics.

Filtered Index

In simplest terms, a filtered index is an index with criteria; the CREATE INDEX statement now
has an optional WHERE clause, which is used to specify the criteria. This can be used to refine
existing indexes that favor certain subsets of data, or it can be used in conjunction with the
new sparse column technology to further optimize sparsely populated tables.

For example, an index that contains both the PersonType and MajorCode columns would
eventually get down to a leaf level containing a combination of PersonType and MajorCode,
which point to the data, as shown in Figure 5-2.

Root Node 1-4 A-Z

Intermediate Nodes 1-2 A-Z 3-4 A-Z

Intermediate Nodes

Leaf Level 4 EENG4 CMPS 4 PHYS

Intermediate Nodes 4 A-Z

FIGURE 5-2 Index that contains both the PersonType and MajorCode columns
When using a filtered index, if we select to index only those rows that have PersonType =
4, rows with other values of PersonType would be ignored, regardless of whether they con-
tained a MajorCode. The result: a smaller index targeting specific rows of data, as shown in
Figure 5-3.

 191 6/30/2008 2:10:53 PM

192

C05625587.indd 1
Introducing SQL Server 2008

Root Node

Intermediate Nodes

Leaf Level

. . .

EENG

A-Z

CMPS PHYS

FIGURE 5-3 Index that targets specifi c rows of data

Using a Filtered Index

I will not attempt to explain the innards of the query optimizer in this section but rather
provide a few guidelines as to when you might expect the optimizer to take advantage of a
fi ltered index.

The probability of a fi ltered index being used is higher when the criteria in WHERE clause of
the select statement matches the criteria of the WHERE clause of the fi ltered index. Let’s re-
visit the Person table from the sparse columns section earlier in this chapter.

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

 , Details XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

GO

CREATE NONCLUSTERED INDEX fiPersonStudentMajorCode

CREATE TABLE Person

(

 PersonID INT NOT NULL PRIMARY KEY

 , FirstName VARCHAR(20) NOT NULL

 , LastName VARCHAR(30) NOT NULL

 , PhoneNumber VARCHAR(15) NOT NULL

 , Email VARCHAR(128) NULL

 , PersonType TINYINT NOT NULL

 , AmountDonated MONEY SPARSE NULL

 , DonationTarget VARCHAR(100) SPARSE NULL

 , StaffDepartmentCode CHAR(5) SPARSE NULL

 , AcademicDepartmentCode CHAR(5) SPARSE NULL

 , CampusOffice VARCHAR(25) SPARSE NULL

 , GraduationYear SMALLINT SPARSE NULL

 , MajorCode CHAR(4) SPARSE NULL

 , Details XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

GO

CREATE NONCLUSTERED INDEX fiPersonStudentMajorCode
 ON Person (MajorCode)

WHERE PersonType = 4;

GO

 ON Person (MajorCode)

WHERE PersonType = 4;

GO

92 6/30/2008 2:10:54 PM

C05625587.indd 193
Chapter 5 Storage 193

CREATE VIEW vwStudent

AS

 SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

 , GraduationYear

 , MajorCode

 FROM Person

 WHERE PersonType = 4

GO

As mentioned earlier in the chapter, the sparsely populated column MajorCode will only have
data for a person that is a type of student (when PersonType equals 4). If the index were cre-
ated without the WHERE clause criteria, then a majority of the MajorCode fi eld data would
be null. By fi ltering for students, the index will now contain only non-null data, and fi nding
students by major will be much more effi cient. Examine the following SELECT statement:

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM vwStudent

WHERE MajorCode = ‘EENG’

This statement is semantically equivalent to the following statement.

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM Person

WHERE PersonType = 4

 AND MajorCode = ‘EENG’

CREATE VIEW vwStudent

AS

 SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

 , GraduationYear

 , MajorCode

 FROM Person

 WHERE PersonType = 4

GO

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM vwStudent

WHERE MajorCode = ‘EENG’

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM Person

WHERE PersonType = 4

 AND MajorCode = ‘EENG’
And this query takes advantage of the fi ltered index because the WHERE clause uses the
same criteria as the fi ltered index’s WHERE clause and because it additionally contains criteria

6/30/2008 2:10:54 PM

194

C05625587.indd 19
Introducing SQL Server 2008

on the column defi ned in the fi ltered index. You might be inclined to think that the following
query will also use the fi ltered index.

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM Person

WHERE PersonType = 4

In this case, the use of the fi ltered index depends on the cardinality of the data. Because
there is likely going to be more rows in the Person table with PersonType = 4 (students make
up a majority of the population at a university), it is actually more effi cient to scan the clus-
tered index than to use the fi ltered index to retrieve the data. If, however, there were few
rows having PersonType = 4, then the fi ltered index would be used. This is similar to the way
standard indexes work.

Now let’s assume that very few people have an email address in the data (most are null). An
appropriate fi ltered index for such a scenario might look like the following index:

CREATE NONCLUSTERED INDEX fiPersonWithEmailByName

 ON Person (FirstName, LastName)

WHERE Email IS NOT NULL;

And then execute the following query.

SELECT

 FirstName

 , LastName

 , Email

FROM Person

WHERE Email IS NOT NULL

You would expect the optimizer to use the fi PersonWithEmailByName index because it cov-
ers the query, but, in fact, it would still do a clustered index scan. Although the fi ltered index
only contains records where the Email is not null, is doesn’t contain the email itself. In this

SELECT

 PersonID

 , FirstName

 , LastName

 , PhoneNumber

 , Email

FROM Person

WHERE PersonType = 4

CREATE NONCLUSTERED INDEX fiPersonWithEmailByName

 ON Person (FirstName, LastName)

WHERE Email IS NOT NULL;

SELECT

 FirstName

 , LastName

 , Email

FROM Person

WHERE Email IS NOT NULL
scenario, we also need the fi eld from the WHERE clause of the fi ltered index to consider the
query covered, as shown in this fi ltered index defi nition.

4 6/30/2008 2:10:54 PM

C05625587.indd 195
Chapter 5 Storage 195

CREATE NONCLUSTERED INDEX fiPersonWithEmailByName

 ON Person (FirstName, LastName) INCLUDE (Email)

WHERE Email IS NOT NULL;

Filtered indexes also have less of a performance hit when modifying data. For example, as-
sume you open registration on your Web site for students to register themselves for the
coming school year (although most do not supply an email). You insert thousands of records
in a very short amount of time, but only those with an email address will be affected by the
presence of the fi PersonWithEmailByName index since the index only contains data for rows
with a non-null email address.

So when should you use fi ltered indexes? The ratio of number of rows affected by the fi ltered
index to the number of rows in the table should be small. As that ratio grows, you will be
best served by a standard index. As that ratio gets smaller, you will best be served by a fi l-
tered index. So if more than 50 percent of the rows in the Person table had a non-null email,
then the fi PersonWithEmailByName index could be more costly to maintain than a standard
index and would be a poor choice.

Parameterized queries can also behave differently than expected. For example, let’s say the
following fi ltered index has been created (with PersonType included in order to allow it to
cover the subsequent query).

CREATE NONCLUSTERED INDEX fiPersonStaffName

 ON Person (LastName, FirstName) INCLUDE (PersonType)

WHERE PersonType IN (2, 3);

And then you execute the following script.

DECLARE @personType TINYINT = 2

SELECT

 FirstName

 , LastName

FROM Person

WHERE PersonType = @personType

 AND LastName = ‘Adams’

CREATE NONCLUSTERED INDEX fiPersonWithEmailByName

 ON Person (FirstName, LastName) INCLUDE (Email)

WHERE Email IS NOT NULL;

CREATE NONCLUSTERED INDEX fiPersonStaffName

 ON Person (LastName, FirstName) INCLUDE (PersonType)

WHERE PersonType IN (2, 3);

DECLARE @personType TINYINT = 2

SELECT

 FirstName

 , LastName

FROM Person

WHERE PersonType = @personType

 AND LastName = ‘Adams’
You would again be inclined to think that the fi ltered index would be used, but because
the value of @staff is not known at compile time, the optimizer does a clustered index scan

6/30/2008 2:10:54 PM

C05625587
196 Introducing SQL Server 2008

instead. For this scenario, if you know that @personType will be 2 or 3, then you can add the
expression from the WHERE clause of the fi ltered index to the query, as follows.

DECLARE @personType TINYINT = 2

SELECT

 FirstName

 , LastName

FROM Person

WHERE PersonType IN (2, 3)

 AND PersonType = @personType

 AND LastName = ‘Adams’

The optimizer then uses the fi ltered index.

More Info See the topic “Filtered Index Design Guidelines” in SQL Server Books Online for
more details.

Filtered Statistics

Where fi ltered indexes allow you to create optimized indexes for predefi ned subsets of data,
fi ltered statistics do the same for statistics. There are several scenarios where fi ltered statistics
can help query plan quality. One of those scenarios occurs when running queries that use
fi ltered indexes. Fortunately, fi ltered statistics are automatically created for fi ltered indexes.

Another scenario is when you have data in a nonindexed column that correlates to data
in another column. For example, if most staff and faculty have an email address, but most
students and benefactors do not have an email address, the following statistics can help im-
prove the query plan of the SELECT statement that follows it.

CREATE STATISTICS stsStaffEmail

ON Person (Email)

WHERE PersonType IN (2, 3);

GO

SELECT

 FirstName

DECLARE @personType TINYINT = 2

SELECT

 FirstName

 , LastName

FROM Person

WHERE PersonType IN (2, 3)

 AND PersonType = @personType

 AND LastName = ‘Adams’

CREATE STATISTICS stsStaffEmail

ON Person (Email)

WHERE PersonType IN (2, 3);

GO

SELECT

 FirstName
 , LastName

 , Email

FROM Person

WHERE PersonType IN (2, 3)

 AND Email LIKE ‘M%’

 , LastName

 , Email

FROM Person

WHERE PersonType IN (2, 3)

 AND Email LIKE ‘M%’

.indd 196 6/30/2008 2:10:54 PM

C05625587.in
Chapter 5 Storage 197

Summary

Sparse columns can reduce storage requirements for the table and increase performance by
allowing more data to be in cache, thus reducing disk input/output (I/O). Filtered indexes can
also reduce storage requirements for the index, also bettering the chance that the data will
be in cache, thus reducing the amount of work the engine must do to find the data via the
index.
dd 197 6/30/2008 2:10:55 PM

C05625587.indd 198 6/30/2008 2:10:55 PM

C06625587.ind
Chapter 6

Enhancements for High Availability

With every version of SQL Server, the options available to database administrators (and their
organizations) for ensuring high availability of corporate data have been improving. SQL
Server 2005 made a particularly notable stride forward by introducing database mirroring. In
this chapter, we will look at how both database mirroring and clustering have been improved
yet again in SQL Server 2008 in terms of performance, reliability, and manageability.

Database Mirroring Enhancements in SQL Server 2008

Database mirroring was introduced in SQL Server 2005 and fully supported since Service
Pack 1. It has proved to be a very popular, high-availability mechanism for several key
reasons:

It does not require special hardware and operates on essentially a shared nothing ar-
rangement. The systems are only joined by the network cable between them.

It was included in the Standard Edition of the product.

It is easy to set up and manage.

Applications can be largely unaware that mirroring is being used.

Two basic styles of mirroring were included: synchronous and asynchronous. In both
cases, the primary server would wait until its transaction log entries were written before
proceeding.

With synchronous mirroring, the primary server also waited for the secondary server to make
the same writes. This provided a high degree of security at a small performance cost. Where
the performance cost of synchronous mirroring was too great (usually because of significant
network latency), asynchronous mirroring could be used. This meant that the primary server
did not wait for the write on the secondary server. This provided a higher performing ar-
rangement but with a greater potential for data loss. Even though this data loss was usually
minor, some systems cannot tolerate any data loss and need to work synchronously.
199

SQL Server 2008 improves the database mirroring story, in terms of performance, reliability,
and manageability.

d 199 6/30/2008 2:11:06 PM

200

C06625587.indd 2
Introducing SQL Server 2008

Automatic Page Repair

If one server in a mirror pair detects a corrupted page in the mirrored database, SQL Server
2008 will now attempt to recover a valid copy of the page from the other server. If it is suc-
cessful, the corrupt page will be replaced by the valid copy, and the error will have been
corrected.

The recovery action is initiated for the following SQL Server errors:

Error 823 An operating system error, such as a cyclic redundancy check (CRC) error,
occurred while reading the page.

Error 824 A logical data error, such as a torn write or the detection of an invalid page
checksum, occurred while interpreting a page that has been read.

Error 829 An attempt was made to read a page that has been flagged as having a
previous restore attempt still pending.

Most pages in a database can be recovered. There are a few exceptions, however, such as
file header pages, database boot pages, and any of the allocation pages such as Global
Allocation Map (GAM), Shared Global Allocation Map (SGAM), and Page Free Space (PFS)
pages.

To provide a typical example, I have executed a query against an intentionally damaged copy
of AdventureWorks. Note in Figure 6-1 that an error has occurred while reading some rows.
FIGURE 6-1 SQL Server Error 824 during page read

00 6/30/2008 2:11:07 PM

C06625587.indd 201
Chapter 6 Enhancements for High Availability 201

After waiting a short while, note in Figure 6-2 that the error has now been corrected auto-
matically, and the command is now successful when executed again.

FIGURE 6-2 Read now successful after automatic recovery

Suspect Pages Table

When attempting to recover the corrupted page from the mirror partner, servers also log
details of the problems with the page in the suspect_pages table in the msdb database. This
table holds a row for each corrupt page, containing the database id, the file id, and the page
id. In addition, it holds details of which type of event has occurred, how many times it has
occurred, and when it last occurred.

It is possible to work out the status of a corrupt page recover by reading the details in this
table for the page in question. The event type will be 1, 2, or 3 for a suspect page and 4 or 5
for a page that has been restored successfully. Other event types are used by database con-
sistency checks (DBCCs).

Figure 6-3 shows the entry in this table that occurred from executing the command against
the damaged database in the last section.
6/30/2008 2:11:07 PM

202

C06625587.indd 202
Introducing SQL Server 2008

FIGURE 6-3 Suspect page table entry

A Note on Hardware Reliability

While having the ability to automatically recover damaged database pages can help improve
the uptime and availability of a database server, it is really important to note that the occur-
rence of errors like 823 and 824 typically indicates a problem in the underlying hardware and
operating system infrastructure that requires attention.

In a correctly operating system, pages don’t mysteriously just become corrupt. The most
common causes of these problems are

A disk subsystem error (this might indicate faulty disk drives, controllers, storage area
network [SAN] controllers, SAN cache memory corruption)

Main system memory corruption (this might indicate a faulty memory subsystem or
some really poorly behaved and highly privileged code)

While monitoring SQL Server, if suspect page table entries are found, further investigation of
the underlying system is almost always warranted.
Log Performance Enhancements

A number of enhancements have also been made to the performance of the database
mirroring log stream. The most significant is that the log stream is now compressed. With
any form of compression, there is always a trade-off against CPU load. Very few SQL Server

6/30/2008 2:11:07 PM

C06625587.indd 203
Chapter 6 Enhancements for High Availability 203

systems are CPU bound unless they have a basic problem like constant procedure recompila-
tions. Most systems have a great deal of free CPU time available and are instead disk-bound.

Log stream compression reduces the amount of data that needs to be sent across the net-
work connection and thus reduces the latency involved. As we discussed earlier, this is a key
performance issue for database mirroring.

SQL Server 2008 also processes the incoming log stream more effi ciently. It issues more
asynchronous input/output (I/O) requests for incoming log blocks thus better utilizing the
sequential write capability of the disk subsystem by combining more data into a single send.

The performance of the undo phase during failover has also been improved for situations
where the primary server is still available online. Rather than waiting until it needs them, the
secondary server will provide hints to the primary server regarding the pages it will likely
need later. This allows the primary server to prefetch them so they are already available in
the send buffer.

Transparent Client Redirection

In conjunction with database mirroring being introduced in SQL Server 2005, a new connec-
tion string property was also added to ADO.NET version 2. A typical connection string would
look like the following:

“Server=PROD;Database=Prosperity;Trusted_Connection=true;Failover Partner=PRODMIRROR;C

onnect Timeout=40”

The Failover Partner entry was used to indicate where the secondary server was located. The
use of this parameter was often misunderstood. When a connection to the primary server
was fi rst made, ADO.NET queried the primary server to ask if a mirror was being used. If
so, ADO.NET then cached details of where the secondary server was located. The Failover
Partner connection string entry was only needed when it was not possible to connect to the
primary server at initial connection time; otherwise, the cached value from the primary server
was used instead.

The cached value was not persisted between application starts and shutdowns. Many ap-
plications could not easily be used with database mirroring if their connection string details
could not easily be modifi ed. Ideally, the application would be unaware that the database
was being mirrored.

“Server=PROD;Database=Prosperity;Trusted_Connection=true;Failover Partner=PRODMIRROR;C

onnect Timeout=40”
With SQL Server 2008, the client library will now persist the cached value received from the
primary server by storing this value in the registry. When a connection attempt is made and
the primary server is unavailable, an attempt will be made to connect to the location per-
sisted in the registry even if there is no Failover Partner property in the connection string.

6/30/2008 2:11:08 PM

C06625587
204 Introducing SQL Server 2008

This means that applications can make use of database mirroring quite transparently, without
modification, as long as they can make an initial connection to the primary server.

SQL Server Clustering Enhancements

Clustering has been the premier high-availability option for SQL Server clients for a long
time. In this area, SQL Server 2008 provides enhancements to both management and
reliability.

Windows Server 2008 Clustering Enhancements

SQL Server 2008 leverages a number of enhancements that have been made to Microsoft
Clustering Services in Windows Server 2008.

New Quorum Model

Windows Server 2008 clustering incorporates a new quorum model. The aim of the change is
to remove single points of failure. The original design assumed that the disk storage for the
quorum disk was always available and could be used to resolve issues when nodes lost com-
munication with each other. Now, by default, each node gets a vote, as does the witness disk
(which used to be referred to as the quorum disk). So, if the witness disk is lost but the nodes
stay up, the cluster can stay available. It also provides for a majority-based cluster manage-
ment scheme where you can fully configure which nodes get a vote.

The witness disk can now be a dedicated logical unit number (LUN), a small disk (at least
512MB) formatted as NTFS and does not require an allocated drive letter. It can even be a
share on a file server that is not part of the cluster. And the file server can provide a witness
disk for more than one cluster by providing multiple shares.

Up to 16 Nodes per Cluster

Windows Server 2008 clustering now supports up to 64 nodes per cluster. While, in theory,
SQL Server might be able to work with all these cluster nodes, SQL Server is being tested with
up to 16 nodes per cluster. For this reason, the supported configuration of SQL Server 2008
will be up to 16 nodes per cluster.
Subnets

While nodes still need to be connected to the same network, editing the subnet mask dur-
ing setup is supported. This allows connections from multiple networks. Geo-clusters are also
supported via virtual local area network (VLAN) technology. This is an abstraction layer that

.indd 204 6/30/2008 2:11:08 PM

C06625587.indd 205
Chapter 6 Enhancements for High Availability 205

allows two IP addresses to appear as a single address to the software layers above. This needs
to be set up after the initial cluster setup process has been completed. All IPs must be up for
the service to come online. Also supported are replicated or mirrored SAN environments that
provide shared storage across cluster nodes.

GUID Partition Table Disks

One of the few remaining relics of the original PC system architecture was the structure of
the hard drives. The Master Boot Record (MBR) structure was based around concepts of cyl-
inders, heads, and sectors. GUID Partition Table (GPT) disks use a new partition table struc-
ture based on Logical Block Addressing (LBA). For SQL Server, the key advantages are

A single partition greater than 2 TB in size can be created.

GPT disks are more reliable as the GPT header and partition table are written both at
the beginning and the end of the drive, for redundancy.

The layout of the GPT disks is as shown in Figure 6-4.

Master Boot Record

GPT Header (Primary)

Header Entries 1 to 4

Partitions

GPT Header (Secondary)

Header Entries 1 to 4

Header Entries 5 to 128

Header Entries 5 to 128

FIGURE 6-4 GPT disk layout

The MBR structure is still the starting place for the disk structure. It is then followed by the
first copy of the GPT header, then the first four partition headers similar to that on an original
MBR-based disk, followed by up to another 124 partition headers. After the partition data,

there is another copy of all the partition headers and of the GPT header. This new structure
provides for a more robust disk subsystem with built-in redundancy on the header entries,
which are the most critical part of the disk.

6/30/2008 2:11:08 PM

206

C06625587.indd 206
Introducing SQL Server 2008

Dynamic Host Configuration Protocol and IPv6 Support

While Network Address Traversal (NAT) technologies reduced the need for a rapid replace-
ment of IP version 4, which is the current basis of the Internet, IP version 6, which will replace
it, is slowly being deployed. Windows Server has provided an IPv6 communications stack for
some time, and Windows Vista has detailed support for it as well. SQL Server 2008 now sup-
ports IPv6 for communication in clustered environments.

It also supports IP address assignments via Dynamic Host Configuration Protocol (DHCP).
Where this is used, IP address resources will be automatically generated using DHCP for de-
pendencies on network name resources. This is performed on a per-interface basis, and IP
addressable resources will need to use the same method (DHCP or static addressing) as the
node they are associated with.

SQL Server Cluster Setup and Deployment Improvements

SQL cluster setup is built on an entirely new architecture. It no longer has a dependency on
remote task scheduling. This removes the source of many potential setup issues and should
greatly improve the reliability of cluster node installations.

Cluster setup is now much more enterprise friendly. Cluster nodes are no longer deployed
from a single node. Node deployment can now be performed reliably using unattended
installation and service packs, and patches can be applied via command-line options.
Enterprise deployments are further enhanced by support for the installation of cluster-
prepared instances, which can then have failover clusters created from them in a single
operation. Command-line options are also available to support this.

For smaller deployments, a simple integrated cluster installation option is provided. This
allows for the configuration of a single node failover cluster in a single setup session.
Additional nodes are then easily added with minimal interaction because feature selection
and product properties are sourced directly from the active node.

Error reporting and handling for setup is also improved through a clear separation of operat-
ing system errors from SQL Server setup rule checks.

Rolling Upgrades and Patches

In earlier versions, a central installer was used to install and service all the nodes in a cluster

at the same time. This meant that downtime would be experienced during such upgrades.
The new installer in SQL Server 2008 involves a more distributed setup process, where each
node is managed independently. The entire cluster no longer needs to be down during

6/30/2008 2:11:08 PM

C06625587.indd 207
Chapter 6 Enhancements for High Availability 207

the upgrade process. This can significantly improve the availability of the overall system by
avoiding such downtime.

Upgrades are now performed in a side-by-side fashion. This allows for much more reli-
able upgrades. SQL Server instances on a cluster can be upgraded one node at a time with
the database upgrade being the only period when the instance is unavailable for client
connections.

Cluster Validation Tool

The System Consistency Checker (SCC) tool was a great addition to SQL Server 2005. Prior to
SQL Server 2005, it was very common for administrators to install SQL Server without having
their underlying systems configured appropriately. They would then have issues when using
SQL Server that were directly caused by not having the prerequisite setup prior to installa-
tion. The SCC ran as the first stage of setup and performed two major functions:

It checked all prerequisite configurations.

Where the lack of one of these configured items would still allow an installation to pro-
ceed with reduced functionality, the tool would warn the administrator about the likely
outcome.

The Cluster Validation Tool (CVT) now provides this same style of checking for prerequisite
cluster configuration and is part of Windows Server 2008 failover clustering. SQL Server 2008
leverages this new validation tool by checking if the underlying operating system cluster has
been validated and that no issues have been found. SQL Server 2008 failover cluster setup
requires a successful CVT result on the operating system cluster. This helps separate operat-
ing system cluster issues from SQL Server setup issues. The CVT runs a set of tests on a set of
servers that intended to be used together as a cluster and can help find problems before the
cluster goes into production mode. It is also possible to use this tool in a diagnostic fashion
once the cluster is up and running; however, when used in this mode, it will skip disks that are
allocated to a service or application.

As an example of the type of checking the CVT will do, it starts by making sure each server is
running the same version of Windows Server and that each server is at the same service pack
and hotfix level. The use of the CVT removes the need for the strict Hardware Compatibility
List (HCL) compliance that was required in earlier versions.
Similar to the way the SCC can still allow a SQL Server installation to be carried out with re-
duced functionality, it is possible for some CVT tests to fail but for the cluster to still install
and function. However, systems that don’t fully pass the tests undertaken by the CVT would
not be treated as supportable by Microsoft Product Support.

6/30/2008 2:11:08 PM

C06625587
208 Introducing SQL Server 2008

High-Availability-Related Dynamic Management Views
Enhancements

Dynamic Management Views (DMVs) were introduced in SQL Server 2005. They provide a
detailed view of what’s going on inside SQL Server. Mostly, they are doing this from data in
memory structures rather than from any persisted data. SQL Server 2008 adds a significant
number of DMVs, some of which are related to high availability.

dm_db_mirroring_auto_page_repair

This new DMV returns a row for every automatic page repair attempt on any mirrored data-
base on the server instance. It keeps up to 100 rows per database. When more than 100 at-
tempts have been made, this DMV returns the most recent 100 entries.

The view returns similar information to that stored in the suspect_pages table in the msdb
database, including the database_id, file_id, page_id, error_type, page_status, and modifica-
tion_time. The error_type returns -1 for hardware (823) errors, 1 for most 824 errors, 2 for
bad checksums, and 3 for torn pages. The page_status returns 2 for a queued request, 3 for a
request sent to the partner, 4 when queued for automatic page repair, 5 when this succeeds,
or 6 if the page is not repairable.

dm_db_mirroring_past_actions

With all the internal enhancements to the SQL Server mirroring system, tracking the internal
state of each mirror partner has become more complex. This view provides insights into the
state machine actions being performed by the mirroring system. For each mirroring session
(represented by a mirroring_guid), it provides entries for each state machine action taken
(state_machine_name, the action_type and name, the current_state, and action_sequence).

Summary

While database mirroring was a major new improvement in SQL Server 2005, this latest ver-
sion of SQL Server makes it an even stronger offering. In particular, database mirroring is
now more robust through automatic page repair, higher performing through log compres-
sion, and easier to configure through transparent client redirection. New dynamic manage-

ment views also provide additional insights into the operation of SQL Server mirroring.

.indd 208 6/30/2008 2:11:08 PM

C06625587.indd 209
Chapter 6 Enhancements for High Availability 209

SQL Server 2005 greatly increased the high-availability options available to SQL Server ad-
ministrators. SQL Server 2008 makes these options much more manageable, reliable, flexible,
and higher performing.

SQL Server 2008 clustering takes advantage of key enhancements to Windows Server
2008 clustering and is now easier to set up through the new setup tooling and the Cluster
Validation Tool and easier to manage through the node-by-node rolling upgrade and patch-
ing mechanisms.
6/30/2008 2:11:09 PM

C06625587.indd 210 6/30/2008 2:11:09 PM

C07625587.in
Chapter 7

Business Intelligence Enhancements

In this chapter, you will look at

SQL Server Integration Services

SQL Server Reporting Services

SQL Server Analysis Services

SQL Server has made dramatic advances in all of these areas. We’ll take a detailed look at
some of the main changes for each of these technologies, and at the end of each section,
we’ll list the other new features that are worthy of further investigation.

SQL Server Integration Services Enhancements

Enhancements to SQL Server 2008 Integration Services (SSIS) have appeared in the areas of
Extract, Transform, and Load (ETL); Lookup; and Data Profiling. Each has been significantly
improved for flexibility and ease of use.

Performing ETL

There are two new enhancements to T-SQL designed for use in this area. The first is that
INSERT INTO can now consume the output from a data manipulation language (DML) state-
ment, and the second is the introduction of MERGE. Both are really useful in their own right,
but, when INSERT INTO is used in conjunction with MERGE, the two work synergistically and
offer huge benefits.

MERGE entered the SQL standard in 2003 for the simple reason that people had noticed
that ETL is often complicated and becomes even more so when we have to deal with slowly
changing dimensions. In the past, we have had to write multiple INSERT, UPDATE, and
DELETE statements to achieve the results we wanted; MERGE enables us to combine these
into a single statement.
211

For illustration, I’ll use a very simple PRODUCT table and another very simple table (PDELTA)
that contains the changes to be made to PRODUCT:

dd 211 6/30/2008 2:11:20 PM

212

C07625587.indd 21
Introducing SQL Server 2008

PRODUCT

PID Name Price IsCurrent

1 Nut 0.45 Y

2 Bolt 0.75 Y

3 Washer 0.1 Y

4 Split washer 0.15 Y

PDELTA

PID Name Price IsCurrent

1 Nut 0.55 Y

5 Screw 0.95 Y

Slowly Changing Dimension, Type 1

In a Type 1 slowly changing dimension, you want any new items inserted into the target
table, but you do not wish to keep any record of historic data. And if the data about an exist-
ing item has changed, you simply want to overwrite previous values with new values. You can
now do this with one MERGE statement:

MERGE Product as TRG

USING PDelta AS SRC

ON (SRC.PID = TRG.PID)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.Price = SRC.Price;

MERGE: The Overview

Okay, so that’s MERGE in action, but what is it doing, and how does it work?

A MERGE statement joins the source table to the target table, and the results from that join
form the set upon which the DML statements within the MERGE statement operate.

Three types of WHEN clauses are supported within a MERGE statement:

PID Name Price IsCurrent

PID Name Price IsCurrent

MERGE Product as TRG

USING PDelta AS SRC

ON (SRC.PID = TRG.PID)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.Price = SRC.Price;
WHEN MATCHED When the source and target rows match, an UPDATE or DELETE
action is performed on the relevant row in the target.

WHEN SOURCE NOT MATCHED An UPDATE or DELETE action is performed on the
relevant row in the target when the row exists in the target but not in the source.

2 6/30/2008 2:11:21 PM

C07625587.indd 213
Chapter 7 Business Intelligence Enhancements 213

 WHEN TARGET NOT MATCHED An INSERT action is performed to insert a row into
the target when the row exists in the source but not in the target.

One MERGE statement can contain multiple WHEN clauses.

Search conditions can be included for each WHEN clause to select the type of DML operation
to be carried out on the row.

So, the statement above essentially says:

Join the two tables on PID.

If there is a row in the source but not the target, insert it (with a “Y” in the IsCurrent column).

If they match, overwrite the price in the PRODUCT table.

MERGE allows us to add an OUTPUT like this:

…

UPDATE SET TRG.Price = SRC.Price

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price;

Here you are making use of a virtual column titled $action, which displays, for each row, the
DML action that was performed upon it. You see this result:

$action PID Name Price

UPDATE 1 Nut 0.55

INSERT 5 Screw 0.95

As a side issue, this information can be very useful as a debugging aid, but it also gives you
exactly what you need when working with Type 2 slowly changing dimensions.

Slowly Changing Dimension, Type 2

In such a dimension, you wish to retain the existing rows that contain the old values while
marking them no longer current by setting IsCurrent to N. You then insert a row containing
the new value with IsCurrent set to Y. You also wish to insert any rows of entirely new data.

MERGE Product as TRG

USING PDelta AS SRC

…

UPDATE SET TRG.Price = SRC.Price

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price;

$action PID Name Price

MERGE Product as TRG

USING PDelta AS SRC
ON (SRC.PID = TRG.PID AND TRG.IsCurrent = ‘Y’)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.IsCurrent = ‘N’

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price;

ON (SRC.PID = TRG.PID AND TRG.IsCurrent = ‘Y’)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.IsCurrent = ‘N’

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price;

6/30/2008 2:11:21 PM

214

C07625587.indd 214
Introducing SQL Server 2008

This statement gets parts of the job done: it sets IsCurrent to N for the current Nut row in
the target and inserts the row for Screw, but it hasn’t inserted the new row for Nut. But that’s
okay because you fi nd the data you need in the output:

$action PID Name Price

UPDATE 1 Nut 0.55

INSERT 5 Screw 0.95

The rows that still need to be inserted into the target table are labeled as INSERT in the col-
umn $action.

Remembering that INSERT INTO can now consume output from a DML statement, all you
have to do is wrap a SELECT statement around the MERGE and then allow the INSERT INTO
to consume that output.

INSERT INTO Product(PID, Name, Price, IsCurrent)

SELECT PID, Name, Price, ‘Y’

FROM

(

MERGE Product as TRG

USING PDelta AS SRC

ON (SRC.PID = TRG.PID AND TRG.IsCurrent = ‘Y’)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.IsCurrent = ‘N’

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price

)

As Changes (action, PID, Name, Price)

WHERE action =’UPDATE’;

This does the job and inserts those fi nal rows.

This is a very simple illustration of the power of these enhancements: The range of possibili-
ties for using MERGE and INSERT INTO is huge, not only for slowly changing dimensions but
for data warehousing in general.

Lookup

$action PID Name Price

INSERT INTO Product(PID, Name, Price, IsCurrent)

SELECT PID, Name, Price, ‘Y’

FROM

(

MERGE Product as TRG

USING PDelta AS SRC

ON (SRC.PID = TRG.PID AND TRG.IsCurrent = ‘Y’)

WHEN TARGET NOT MATCHED THEN

INSERT VALUES (SRC.PID, SRC.Name, SRC.Price, ‘Y’)

WHEN MATCHED THEN

UPDATE SET TRG.IsCurrent = ‘N’

OUTPUT $action, SRC.PID, SRC.Name, SRC.Price

)

As Changes (action, PID, Name, Price)

WHERE action =’UPDATE’;
Simply populating the data warehouse with data using ETL routines can be a time-
consuming business, so to speed things up, the performance of the Lookup component has
been signifi cantly improved. It also has a new, easier to use user interface (UI), as shown in
Figure 7-1.

6/30/2008 2:11:21 PM

C07625587.indd 215
Chapter 7 Business Intelligence Enhancements 215

FIGURE 7-1 Lookup Transformation Editor dialog box

A Lookup is frequently used during the ETL process. Imagine that you have a fact table that
has a column called EmployeeID. You also have a dimension table that lists the complete set
of employees. A Lookup could be used to verify that all of the facts actually point to existing
employees. In this case, the fact table is providing the source data, and the dimension table
would be providing the reference set for the Lookup. (Lookups can, of course, do far more
than simply verify data; they can also insert data from the reference set, such as the employ-
ee’s name, into the source.)

The reference data can be directly addressed but, for reasons of efficiency, is often cached. In
SQL Server 2008, the cache can be populated from a dataflow rather than from a SQL state-
ment. (In SQL Server 2005, a Lookup could only use data from specific Object Linking and
Embedding Database, or OLE DB, connections and be populated only by a SQL query.) The
cache can now take data from many different sources: text, Excel, XML, Web services, or any-
thing accessible using an ADO.NET provider. The Cache Connection Manager indicates the
cache that is to be populated by the new Cache Transform component.

Another major improvement is that the cache no longer has to be reloaded every time it is
used. If, say, one package has two pipelines that need the same reference dataset, the cache
can be saved to virtual memory or permanent file storage, rendering it accessible to multiple
Lookup components within a single package. The file format for the cache is optimized for
speed and can be accessed many times faster than reloading the cache from a relational

source.

Lookup has also gained a miss-cache feature. If the Lookup component is to run directly
against the database, this feature can be set to include in the cache those key values from the
source with no matching entries in the reference dataset. If the Lookup knows it has no value

6/30/2008 2:11:22 PM

216

C07625587.indd 216
Introducing SQL Server 2008

of 999 in its reference dataset and that value comes in from the source, the component won’t
waste time and effort looking for it in the reference set again. It is reported that, in certain
circumstances, this feature alone can improve performance by 40 percent.

Furthermore, no longer do miss-cache rows end up in the error output; there’s a new
“Lookup no match output” to which such rows can be directed.

Data Profiling

Before you can even think about writing a data cleansing process in SSIS, you have to under-
stand the distribution of the data you are trying to clean. In the past, this has involved writing
multiple GROUP BY queries, but now you can get a much better look using the new Data
Profiling Task in SSIS. If you want to see it in action, try the following.

1. Create a new Integration Services project in Visual Studio 2008.

2. On the Data Flow tab, click the text that begins No Data Flow Tasks.

3. From the toolbox, drag an ADO.NET source onto the designer surface.

4. Click off the source to deselect it, and then double-click it.

5. Using the dialog box that opens, make a new connection to AdventureWorks (or the
database of your choice), as shown in Figure 7-2.

FIGURE 7-2 Connection dialog box

6. Click the Control Flow tab, where the new Data Flow Task should be visible.

7. Using the toolbox, drag and drop a Data Profiling Task from the list of Control Flow
Tasks.
8. Click the Data Flow Task, and then click the green flow arrow, dragging until it connects
the two.

9. Double-click the Data Profiling Task, and set up a file for the output. (Where you can
put the file depends on your security settings: This example uses the desktop as a

6/30/2008 2:11:22 PM

C07625587.indd 217
Chapter 7 Business Intelligence Enhancements 217

convenient location.) Use the .xml extension, as this is the form in which the profile is
output.

10. Click Quick Profile, and then choose the connection and the table you want profiled,
as shown in Figure 7-3. Accept the remaining defaults. (You can, of course, play with
these, but the defaults are just fine for seeing the profiler in action.)

FIGURE 7-3 Single Table Quick Profile Form dialog box

11. Click OK. The profile properties are displayed. Click OK again. As shown in Figure 7-4,
the two tasks are set up (their warning icon is no longer visible), and you’re ready to go.
FIGURE 7-4 Completed Data Flow Task

6/30/2008 2:11:23 PM

218

C07625587.indd 2
Introducing SQL Server 2008

12. Click the Start Debugging button (the one with a green button). The tasks change color
on screen, and the Error List shows no problems—a successful outcome.

To inspect the profile itself, run DataProfileViewer.exe. You may find it at

C:\Program Files\Microsoft SQL Server\100\DTS\Binn\DataProfileViewer.exe

or

C:\Program Files (x86)\Microsoft SQL Server\100\DTS\Binn\DataProfileViewer.exe

Once you’ve found the program, run it and navigate to the location of the saved profiler .xml
file. Expand the view to inspect the profile. As shown in Figure 7-5, you can see the Column
Value Distribution Profile for the Title field. As you’d expect, there is but one CEO and many
Buyers.

FIGURE 7-5 Data Profile Viewer dialog box

Apart from column value distribution, it also displays the Column Null Ratio Profile and
Column Length Distribution Profile for each column. The Data Profiling Task is a cool tool
and helps you get a feel for data before you embark upon cleaning tasks.
Other New Features

Scripting has improved so that you can use, for example, C# as a scripting language as well as
VB.NET.

18 6/30/2008 2:11:23 PM

C07625587.indd
Chapter 7 Business Intelligence Enhancements 219

The SQL Server Import/Export Wizard (which generates SSIS packages) has been improved,
as has the ADO.NET support.

Change Data Capture (CDC) means that source systems based on SQL Server 2008 will be
able to capture changes to tables (inserts, updates, and deletes) and thus be able to work far
more efficiently with SSIS.

SQL Server Reporting Services

In the past, to generate a meaningful, accurate report, you needed to understand both the
data structure and the business context in which the data was to be used. This dual require-
ment has often generated a degree of tension in the delicate balance between IT profession-
als and business users. Each understood only half of the equation, so who got to author the
report?

In SQL Server 2005, the IT professionals were provided with a tool called Report Designer in
SQL Server Business Intelligence Development Studio, which allowed them to create reports.
In addition, to help the business users create their own reports, Microsoft introduced the
concept of a Report Model, which was created by the IT guys. It shielded the business users
from the complexity of the online transaction processing (OLTP) or data warehouse environ-
ment yet provided them with access to the data they needed to create reports. The business
users created the reports based on the model by means of a tool called Report Builder.

This arrangement was good for most users, but it tended to restrict the features available to
power users on the business side. So, in SQL Server 2008, this has been addressed. Report
Designer has been upgraded for developers, and it still ships as part of the SQL Server
Business Intelligence (BI) Development Studio. For business users, Report Builder is now an
office-optimized authoring environment that ships as a stand-alone tool. It is a more pow-
erful design tool than Report Builder 2005, sharing many design components with Report
Designer; in addition, it can now connect to many different data sources.

Report Designer in SQL Server Business Intelligence
Development Studio

To use Report Designer, simply open SQL Server Business Intelligence Development Studio,

and create a new Report Server project. Add a data source, right-click Reports in the Solution
Explorer, and choose Add New Report, as shown in Figure 7-6.

 219 6/30/2008 2:11:23 PM

220

C07625587.indd 220
Introducing SQL Server 2008

FIGURE 7-6 Report Designer

In Community Technology Preview 6 (CTP6), you click Here, as requested; in later CTPs and
the final product, you simply see an empty report at this point. You then fill in the details,
and, after clicking Next, you write a SELECT statement to pull in the data you need. In Figure
7-7, I am simply using a SELECT * against a view I created earlier.
FIGURE 7-7 Query Designer dialog box

Finish off the dialog box requests, and you are ready to go.

6/30/2008 2:11:24 PM

C07625587.indd 22
Chapter 7 Business Intelligence Enhancements 221

Report Builder

Figure 7-8 shows Report Builder, the stand-alone report authoring environment for the busi-
ness user. It has a ribbon interface to provide UI compatibility with the 2007 Microsoft Office
System.

FIGURE 7-8 Report Builder 2008

Note In the current CTP (CTP6), Report Builder is called the Report Designer Preview and is lo-
cated in:

C:\Program Files\Microsoft SQL Server\100\Tools\Reporting Services\ReportDesigner\
ReportDesigner.exe

or:

C:\Program Files (x86)\Microsoft SQL Server\100\Tools\Reporting Services\ReportDesigner\
ReportDesigner.exe

In later CTPs, it will be renamed Report Builder 2008.

You set up the connection to the data source in much the same way as Report Designer. The

two products share many components, such as the Layout surface, dialog boxes, data pane,
and grouping pane.

1 6/30/2008 2:11:24 PM

222

C07625587.indd 2
Introducing SQL Server 2008

New Controls in Both Authoring Environments

Once you have set up the data connection in either version, the two versions can be driven in
very similar ways. Both allow you to access the new controls that have appeared, so let’s take
a look at those.

Tablix Data Region

SQL Server Reporting Services (SSRS) 2008 has a new Tablix data region as part of its Report
Definition Language (RDL). It combines three existing data region types—Table, Matrix, and
List—and brings together the features of all three. It supports them as layout types called
(unsurprisingly) Table, Matrix, and List. These layouts form basic displays that you can then
tweak by sorting, filtering, and calculating aggregate values. The new Tablix data region
gives you considerably more control over layout and, specifically, lets you add column groups
to a table layout and adjacent column groups to a matrix layout, in addition to static rows
and columns for things like headers, labels, and subtotals.

However, if you look in the toolbox, as shown in Figure 7-9,

FIGURE 7-9 Report Items toolbox

you won’t find a Tablix control as such—just Table, Matrix, and List. That’s by design, and by
dragging one onto the report, you can take a look at its properties, as shown in Figure 7-10.

Tables, Matrices, and Lists all share the same properties, so they really are the same—a Tablix
control. Essentially, the difference between them is in the default structures of each.
22 6/30/2008 2:11:24 PM

C07625587.indd 223
Chapter 7 Business Intelligence Enhancements 223

FIGURE 7-10 Tablix Properties dialog box

Gauge

We all knew that we wanted them, and here they are. A gauge is designed to display a single
value or a small fixed set of values like target, value, goal, etc. The main difference between
the chart and the gauge is that, with a chart, the number of data points may be unknown at
design time and the query results determine the actual number. With a gauge, you know the
number of data points in advance.

A bank of gauges is especially good for easy-to-read displays that compare several values:
A group of gauges could, for instance, be used to display key performance indicators. You
can also embed a gauge into a table or matrix data region and display data in linear or radial
form.

Gauges allow you to present numerical data in a user-friendly fashion. I’ll demonstrate this in
the Visual Studio version of Report Designer, but it works pretty much the same in the stand-
alone version.

From the toolbox, drag a gauge onto the report whereupon a box opens and shows the
range of new toys that are available, as shown in Figure 7-11.
FIGURE 7-11 Gauge selection dialog box

6/30/2008 2:11:25 PM

224

C07625587.indd 2
Introducing SQL Server 2008

I’ll go for the 180 degree with range and put it onto the report, as shown in Figure 7-12.

0
2
0

40 60

8
0

1
0

0

[Sum(OrderQuantity)]

Bind gauge values to data fields here

FIGURE 7-12 Radial pointer gauge

Clicking on the RadialPointer1 box allows you to choose a value that the gauge will show—
you can even add the text version to prove that it’s working, as shown in Figure 7-13.

Sum of Orders = 44

0
2
0

40 60

8
0

1
0

0

0

FIGURE 7-13 Radial pointer gauge with data

The gauge, like all of these controls, is highly configurable.
Chart Data Region

This data region has gained new visualization features: an extended list of chart types is
available, now including polar, range, and shape. Figure 7-14 shows only a subset of those
that are available.

24 6/30/2008 2:11:26 PM

C07625587.indd 225
Chapter 7 Business Intelligence Enhancements 225

FIGURE 7-14 Select Chart Type dialog box

Secondary category and value axes have been introduced so that multiple data series can be
displayed on more than one axis. For each axis, you have control over scale breaks, custom
axis intervals, and interlaced strip lines. There is also support for run-time formulae.

Microsoft Office Rendering

This is a new feature that lets users of Word access reports. The report is rendered as a
Word document compatible with Word versions back to and including Word 2000. This is a
great addition that provides an important method of disseminating report data throughout
an organization, putting the information within easy reach of a much larger portion of the
workforce.

The existing Excel renderer has been enhanced and now supports features such as nested
data regions, merged cells, and sub-reports.

These renderer enhancements let users gain the insights into data that a good report can
offer while working with familiar Office tools.
Finally, coming in the next CTP refresh, Reporting Services will provide support for rich text.
This will enable the developer to have much finer control over the report formatting and,
hence, the creation of much more sophisticated reports.

6/30/2008 2:11:26 PM

C0762558
226 Introducing SQL Server 2008

SQL Server Analysis Services

One of the main enhancements in SQL Server 2008 Analysis Services (SSAS) is focused on
speeding up Multidimensional Expressions (MDX) queries—particularly those that potentially
touch a large number of null values. The mechanism that produces this performance en-
hancement is known as block computation. In addition, there have been huge improvements
in terms of the backup performance. Finally, there is the new Scalable Shared Database (SSD)
feature, which allows you to scale your Online Analytical Processing (OLAP) query workload
across many servers with just a single copy of the database.

Block Computation

Data in the cube space is often sparse, which is another way of saying that it is often full of
null values. Think about it this way: A fact table stores information about events that actu-
ally occur—only when a customer buys a product from an employee is a row entered. In one
week, a busy store might have 10,000 facts.

ProductKey TimeKey EmployeeKey CustomerKey

372 762 774 769

287 762 234 445

380 762 124 8765

390 762 565 5

A multidimensional matrix, on the other hand, theoretically stores all of the possible inter-
sections for Time, Employee, Customer, and Date. Given 10,000 customers, 100 employees,
1,000 products, and fi ve days, that’s potentially just less than 5 billion nulls. In practice, of
course, data compression reduces this extensively, but the nulls are still there in the sense
that if you ask to see the value, a null has to be returned. It turns out that these nulls, if pres-
ent in large numbers, can signifi cantly slow queries.

Block computation solves this. Of course, the internal structure of a cube is very complex, so
any description of how internal processes work is necessarily an abstraction, but you can pic-
ture the improvements that block computation brings in the following way.

Imagine an MDX calculation that calculates a running total for two consecutive years, some-
thing like this:

ProductKey TimeKey EmployeeKey CustomerKey
CREATE MEMBER CURRENTCUBE.[Measures].RM

 AS ([Order Date].[Hierarchy].PrevMember,[Measures].[Order Quantity])+

 Measures.[Order Quantity],

FORMAT_STRING = “Standard”,

VISIBLE = 2 ;

CREATE MEMBER CURRENTCUBE.[Measures].RM

 AS ([Order Date].[Hierarchy].PrevMember,[Measures].[Order Quantity])+

 Measures.[Order Quantity],

FORMAT_STRING = “Standard”,

VISIBLE = 2 ;

7.indd 226 6/30/2008 2:11:26 PM

C07625587.indd 227
Chapter 7 Business Intelligence Enhancements 227

Further imagine that there are very few values for most products in the years 2003 and 2004.
The following tables, showing a small subset of products, illustrate this.

2003 2004

Product 1

Product 2 2

Product 3

Product 4 5

Product 5

Product 6

Product 7 3 1

Product 8

Product 9

The following query will return the calculated measure RM for all products ordered in 2004.

SELECT [Order Date].[Hierarchy].[all].[2004] on columns,

[Dim Product].[Product Key].[All].children on rows

From Foo

Where Measures.RM

Let’s look at how this question is solved in SSAS 2005. The evaluation proceeds one cell at a
time. For each cell, for the current year (2004, in this case), go to the previous year, pick up
the quantity ordered, and add it to the quantity ordered in the current year. This approach
has two major speed disadvantages.

First, the step of navigating to the previous year to see if data is present is performed as
many times as there are products. You are, in effect, ascertaining that data exists for 2003
potentially thousands of times. The nature of a hierarchy tells you that, if there is order
quantity data present at the intersection of any product for 2003, it should be present for all
products. This one-cell-at-a-time approach involves huge duplication of effort and will inevi-
tably slow query performance, and it is a problem regardless of whether there are many nulls
or none. It’s the act of checking to see if the data exists that takes the time and effort.

Second, the data from each pair of cells for each product are calculated. Where there are
many nulls, a high proportion of those calculations return a null, and every single one of

2003 2004

SELECT [Order Date].[Hierarchy].[all].[2004] on columns,

[Dim Product].[Product Key].[All].children on rows

From Foo

Where Measures.RM
those calculations represents wasted effort. Looking at the preceding tables, the only prod-
ucts for which you need to calculate the value are 2, 4, and 7. Where there are many nulls,
the effect on performance can be devastating.

6/30/2008 2:11:27 PM

228

C07625587.indd 228
Introducing SQL Server 2008

So what does SSAS 2008 do to improve query speed? The whole approach to processing the
query has changed, and it addresses both the problems outlined above.

The “many checks for previous period data” problem is fi xed by a straightforward technique.
Data for the current year is pulled back and then a single check is made to see if data exists
for the previous year. It sounds simple, it is simple, and it improves performance dramatically.
If data exists, it is pulled back.

The “making many pointless calculations” problem is solved in an equally straightforward
fashion. Before any calculations take place, the order quantity data for 2003 and 2004 is in-
spected, and any cells containing null values are removed.

2003

Product 2 2

Product 7 3

2004

Product 4 5

Product 7 1

Once this has been done, the two sets of data can be compared:

2003 2004

Product 2 2

Product 4 5

Product 7 3 1

The calculations used only data with the potential to contribute to a meaningful result. In
other words, calculations are only performed for products with a value in both years or with
a value in either one of them.

Block computation can improve the speed of querying by several orders of magnitude, given
the right (or should that be wrong?!) distribution of data.

Analysis Services Enhanced Backup

2003

2004

2003 2004
There is a new backup storage subsystem in SSAS 2008, shown in Figure 7-15. The bad news
about this feature is that, just like block computation, there is nothing you can do with it
to show off your prowess; it just works. The good news is that you simply get far, far bet-
ter backup performance without having to change a single line of code. So the good news

6/30/2008 2:11:27 PM

C07625587.indd 229
Chapter 7 Business Intelligence Enhancements 229

outweighs the bad by several orders of magnitude. In addition, the backup now scales much
more effectively, so it can handle SSAS databases of well over a terabyte in size. For many
large volume users, this means they can stop doing raw file system copying of data files and
use the backup system.

FIGURE 7-15 Backup Database dialog box

A side effect of this new subsystem is that the format of the SSAS backup files has changed
(although the file extension remains the same). While the new subsystem won’t save in the
2005 format, it is fully backward compatible with the old format, which means you can re-
store databases in SSAS 2008 that were backed up in SSAS 2005.

Enhancement to Writeback Performance

It has long been possible in SSAS to write back cell values (at both leaf and aggregation level)
to the cube. In practice, these values are written to a special Relational Online Analytical
Processing (ROLAP) writeback partition, which stores not the new value but the difference
(the delta) between the old and the new values. This means the original value can still be re-
trieved from the cube, and, when an MDX query asks for the new value, both partitions are
queried and the aggregated value (the original summed with the delta) is returned.

In SSAS 2005, these writeback partitions had to be ROLAP (stored in relational tables), which
introduced a potential bottleneck in the performance. By now, you are already way ahead
of me on this enhancement. Yes, in SSAS 2008, these writeback partitions can be stored as

Multidimensional Online Analytical Processing (MOLAP). As it happens, this can slow down
the writeback commit fractionally (because the engine has to update the MOLAP partition
data as well as the writeback table), but that is very rarely a bottleneck in practice. The huge
gain is that query performance is dramatically improved in almost all cases.

6/30/2008 2:11:27 PM

230

C07625587.indd 230
Introducing SQL Server 2008

Scalable Shared Databases for SSAS

As SQL Server BI becomes more pervasive, the number of users requiring access to cubes is
increasing. There are two possible solutions, scale up or scale out.

Scale up is conceptually very simple—you buy a very large server with multiple processors
and lots of RAM, and you place the cube on that. If you use a large enough server, this solves
the problem and has the added advantage that individual query performance is significantly
enhanced. Unfortunately, so is the cost: Large servers tend to cost more per CPU than mul-
tiple small servers, which can be very inexpensive.

SSAS 2005 provided a scaleout solution in the sense that you could replicate the data across
multiple servers and then put a load balancing solution such as Microsoft Network Load
Balancing (NLB) between the servers and the users. This could be (and is) made to work, but
there is a significant overhead in set up and maintenance.

SSAS 2008 introduces a new scaleout solution feature, which is called Scalable Shared
Database (SSD), not unreasonably because it works in a very similar way to the SSD fea-
ture introduced in the SQL Server 2005 relational database. This consists of three logical
components:

Read-only database, which allows a database to be marked as read-only

Database storage location, which allows a database to reside outside the server Data
folder

Attach/detach database, which allows the database to be attached or detached from
any Universal Naming Convention (UNC) path

These three features can be used independently to your advantage, but when used together,
they enable a scale-out solution to be constructed relatively easily.

Other New Features

Check out the Dynamic Management Views (DMV) in Analysis Services 2008 and also
the resource monitoring. MDX has a whole string of enhancements in addition to
block computation, such as dynamic sets, non-visual subselects, and calc members
subselects.

Analysis Management Objects warnings: SSAS 2008 now shows real-time suggestions/
warnings about design and best practice as you work. They display in the UI as blue

wiggly underlines, and hovering over the underlined object will display the warning.

Business Intelligence Design Studio (BIDS) also has some major enhancements, such as the
attribute relationship designer, the aggregation manager, and the usage-based optimization.

6/30/2008 2:11:27 PM

C07625587.ind
Chapter 7 Business Intelligence Enhancements 231

Summary

There is a huge list of improvements and new features in SQL Server 2008:

MERGE

Lookups

Profiling

Report development improvements

Tablix

Gauge

Office rendering

Rich text support

Block computation

Enhanced backup

Enhancement to writeback performance

Scalable Shared Databases for SSAS

And the list goes on. These are all features that are designed to make life easier, either for
the BI developer or the end user. Without a doubt, they add up to an excellent reason to up-
grade to SQL Server 2008.

For more detail on the new features in SQL Server 2008, check out Microsoft’s white pa-
pers on the subject; for example: http://www.microsoft.com/sql/techinfo/whitepapers/
SQL2008IntroDW.mspx.

Two other white papers titled “Best Practices for Scale up Data Warehousing in SQL Server
2008” and “Best Practices for Data Warehousing with SQL Server 2008” are in preparation as
we finish this book and should be available from the Microsoft Web site.
d 231 6/30/2008 2:11:27 PM

C07625587.indd 232 6/30/2008 2:11:27 PM

3

Z01I625587.in
enhancements, clustering 23

Index

A
adding child nodes, 81–84
adjacency model, converting, 93–97
Any element, 117–119
auditing SQL Server, 17–28

C2 audit mode, 18
data definition language (DDL)

triggers, 18
data manipulation language

(DML) triggers, 18
database audit specifications,

23–25
results, 25–28
server audit specifications, 22–23
specifications, 21–25
steps, 19–21

automatic page repair, 200–202

B
backup compression, 54–55
BIDS (Business Intelligence Design

Studio), 230
Business Intelligence Design Studio

(BIDS), 230

C
C2 audit mode, 18
child nodes, adding, 81–84
classifier function, 42–44
CloseHandle method, 103
CLR enhancements, 165–172

large aggregates, 165–169
large user-defined types, 169
null support, 169–170
order awareness, 170–172
system CLR types, 172

Cluster Validation Tool (CVT), 207
clustering, enhancements, 204–208

Cluster Validation Tool, 207
DHCP, 206
dm_db_mirroring_auto_page_

repair, 208
dm_db_mirroring_past_actions,

number of nodes supported, 204
rolling upgrades and patches,

206–207
setup and deployment

improvements, 206
subnets, 204–205

collection data
viewing, 65–67

collection sets and items, creating,
60–63

collector types, 59–60
column sets, sparse columns,

187–190
compact design, HIERARCHYID, 80
compressing nonclustered indexes,

53–54
compressing partitions, 51–53
compression, 46–57. See also also

data compression
additional notes, 57
backup compression, 54–55
data compression, 46–54
using Resource Governor to

minimize CPU impact, 55–57
conditions, policy-based

management, 4
configuring FILESTREAM, 98–101
converting adjacency model, 93–97
converting XML to hierarchy, 97–98
Coordinated Universal Time (UTC),

121, 130–131
creating collection sets and items,

60–63
creating resource pools and

workload groups, 44–45
creating spatial indexes, 111–113
CVT (Cluster Validation Tool), 207

D
data compression, 46–54

compressing nonclustered
indexes, 53–54

compressing partitions, 51–53
implementing, 49–51
page compression, 47–49
row compression, 46–47

data definition language (DDL)
triggers, 18

data manipulation language (DML)
triggers, 18
XML, 124–125

note on hardware reliability, 202
suspect pages table, 201
transparent client redirection,

203–204
databases, defining with

FILESTREAM, 101–102
date and time data types, 125–127

DATENAME function, 127
DATEPART function, 127
data and time functions, 127–130
notes on conversion, 130–131

DATENAME function, 127
DATEPART function, 127
DateTime, Date, and Time

validation, 121–122
DBCCs (database consistency

checks), 201
DDL (data definition language)

triggers, 18
defining databases with

FILESTREAM, 101–102
defining tables with FILESTREAM,

102
density, spatial indexing, 110
DHCP (Dynamic Host Configuration

Protocol), 206
dm_db_mirroring_auto_page_

repair, 208
dm_db_mirroring_past_actions, 208
DML (data manipulation language)

triggers, 18
XML, 124–125

Dynamic Host Configuration
Protocol (DHCP), 206

Dynamic Management Views
(DMVs) enhancements, 208

E
EKM (estensible key management),

36–38
in practice, 37–38
overview, 36

enhancements to database
mirroring, 199–204

automatic page repair, 200–202
log performance, 202–203
note on hardware reliability, 202
suspect pages table, 201
transparent client redirection,

203–204
enhancements, CLR, 165–172
208
Dynamic Management Views

(DMVs) enhancements, 208
GUID Partition Table disks, 205
IPv6, 206
new quorum model, 204

database consistency checks
(DBCCs), 201

database mirroring, enhancements,
199–204

automatic page repair, 200–202
log performance, 202–203

large aggregates, 165–169
large user-defined types, 169
null support, 169–170
order awareness, 170–172
system CLR types, 172

enhancements, clustering, 204–208

dd 233 7/1/2008 6:58:04 PM

234

Z01I625587.indd 234
enhancements, SSIS

Cluster Validation Tool, 207
DHCP, 206
dm_db_mirroring_auto_page_

repair, 208
dm_db_mirroring_past_actions,

208
Dynamic Management Views

(DMVs) enhancements, 208
GUID Partition Table disks, 205
IPv6, 206
new quorum model, 204
number of nodes supported, 204
rolling upgrades and patches,

206–207
setup and deployment

improvements, 206
subnets, 204–205

enhancements, SSIS, 211–219
Change Data Capture (CDC), 219
data profiling, 216–218
Lookup, 214–216
MERGE, 212–213
performing ETL, 211–214
scripting, 218
slowly changing dimension, type,

212–214
SQL Server Import/Export Wizard,

219
Error List, 174–175
estensible key management (EKM),

36–38
in practice, 37–38
overview, 36

ETL (Extract, Transform, and Load),
211–215

Extract, Transform, and Load (ETL),
211–215

F
facets, policy-based management,

3–4
FILESTREAM, 98–104

configuring, 98–101
defining databases, 101–102
defining tables, 102
updating data, 103–104
using, 101–104

filtered indexes, 191–196
filtered statistics, 196
using, 192–196

GetAncestor method, 86
GetDescendant method, 81–84
GetLevel method, 85, 90–91
GetRoot method, 81
GPT (GUID Partition Table) disks,

205
GROUP BY grouping sets, 155–164

CUBE, 160–162
GROUPING_ID, 162–163
GROUPING SETS, 156–158
ROLLUP, 158–159

GROUPING SETS, 156–158
GUID Partition Table (GPT) disks,

205

H
Hardware Compatibility List (HCL),

207
hardware reliability, 202
HCL (Hardware Compatibility List),

207
HIERARCHYID, 79–98

adding child nodes, 81–84
compact design, 80
converting adjacency model to,

93–97
converting XML to hierarchy,

97–98
GetDescendant method, 81–84
GetRoot method, 81
indexing, 89–91
limitations and cautions, 91–93
querying, 85–89
root node, 81
working with, 93–98

I
implementing data compression,

49–51
indexes, filtered, 191–196

filtered statistics, 196
using, 192–196

indexing
HIERARCHYID, 89–91
MERGE, 151–152

Intellisense, 172–174
IPv6, clustering and, 206
IsDescendant method, 85–86

let clauses, 123–124
limitations and cautions,

HIERARCHYID, 91–93
log performance, 202–203
Logical Block Addressing (LBA), 205

M
management, policy-based, 1–17

conditions, 4
facets, 3–4
in practice, 14–17
in SQL Server 2008, 1–2
in SQL Server Management

Studio, 2–3
objects, 3
policies, 6–7
policy categories, 10–11
policy checking and preventing,

11–14
target sets, 8–10

Master Boot Record (MBR), 205
matching clauses

notes on all matching clauses,
147–148

WHEN MATCHED, 146
WHEN NOT MATCHED BY

SOURCE, 147
WHEN NOT MATCHED BY

TARGET, 147
MBR (Master Boot Record), 205
MDX (Multidimensional Expressions)

queries, 226, 229–230
MERGE, 144–155

exemplified, 148–150
indexing and, 151–152
notes on all matching clauses,

147–148
optimizing, 150–151
OUTPUT and, 152–155
WHEN MATCHED, 146
WHEN NOT MATCHED BY

SOURCE, 147
WHEN NOT MATCHED BY

TARGET, 147
minimizing CPU impact, 55–57
mirroring, database, 199–204

automatic page repair, 200–202
log performance, 202–203
note on hardware reliability, 202
suspect pages table, 201
filtered statistics, 196
FLWOR, 123

G
GEOGRAPHY, 79, 104, 110–115
GEOMETRY, 79, 104–115

L
large aggregates, 165–169
large user-defined types, 169
lax validation support, 115–119
LBA (Logical Block Addressing), 205

transparent client redirection,
203–204

MOLAP (Multidimensional Online
Analytical Processing), 229. See
also also ROLAP (Relational
Online Analytical Processing);

7/1/2008 6:58:04 PM

235

Z01I62558
spatial data types

also OLTP (online transaction
processing)

Multidimensional Expressions
(MDX) queries, 226, 229–230

Multidimensional Online Analytical
Processing (MOLAP), 229.
See also also Relational
Online Analytical Processing
(ROLAP); also Online Analytical
Processing (OLAP)

N
NAT (Network Address Traversal),

206
Network Address Traversal (NAT),

206
new date and time data types,

125–127
data and time functions, 127–130
DATENAME function, 127
DATEPART function, 127
notes on conversion, 130–131

new quorum model, 204
nonclustered indexes, compressing,

53–54
null support, 169–170
number of nodes supported, 204

O
object dependencies, 164–165
objects, policy-based management,

3
OLAP (Online Analytical Processing),

226. See also also MOLAP
(Multidimensional Online
Analytical Processing); also
ROLAP (Relational Online
Analytical Processing)

OLTP (online transaction
processing), 219

Online Analytical Processing
(OLAP), 226. See also also
Multidimensional Online
Analytical Processing (MOLAP);
also Relational Online
Analytical Processing (ROLAP)

online transaction processing
(OLTP), 219

optimizing MERGE, 150–151
order awareness, 170–172

P
Parse method, 85–95, 97, 114–115
partitions, compressing, 51–53
patches, 206–207
performance data collection, 58–69

collecting data, 64–69
collector types, 59–60
creating collection sets and items,

60–63
setup, 58–59
user collection set data, 67–69
viewing collection data, 65–67

performing ETL, 211–214
plan forcing, 69–72
plan freezing, 72–74
plan guides, viewing, 75–77
policies, management, 6–7
policy categories, 10–11
policy checking and preventing,

11–14
policy-based management, 1–17

conditions, 4
facets, 3–4
in practice, 14–17
in SQL Server 2008, 1–2
in SQL Server Management

Studio, 2–3
objects, 3
policies, 6–7
policy categories, 10–11
policy checking and preventing,

11–14
target sets, 8–10

PowerShell, 177–178

Q
query plan freezing, 69–77

plan forcing, 69–72
plan freezing, 72–74
viewing plan guides, 75–77

querying HIERARCHYID, 85–89

R
RDBMS (relational database

management system), 79
Relational Online Analytical

Processing (ROLAP), 229. See
also also Multidimensional
Online Analytical Processing

Gauge, 223–224
Office rendering, 225
overview, 219
Report Builder, 221
Report Designer, 219–220
Tablix data region, 222

Resource Governor, 39
classifier function, 42–44
creating resource pools and

workload groups, 44–45
resource pools, 39–41
using to minimize CPU impact,

55–57
workload groups, 41–42

resource pools, 39–41
creating, 44–45
settings, 40–41

results, auditing, 25–28
ROLAP (Relational Online Analytical

Processing), 229. See also also
MOLAP (Multidimensional
Online Analytical Processing);
also OLTP (online transaction
processing)

rolling upgrades and patches,
206–207

root node, 81
ROW_NUMBER function, 93–94,

97–98
rules and regulations, sparse

columns, 186–187
rules and restrictions, spatial

indexing, 111

S
SCC (System Consistency Checker),

207
schema validation enhancements,

115–122
Service Broker enhancements,

175–176
setup and deployment

improvements, 206
sparse columns, 179–190

column sets, 187–190
explained, 179–180
rules and regulations, 186–187
when to use, 180–186

spatial data types, 104–115
GEOGRAPHY, 113–115
spatial indexing, 110–113
Order element, 118–119, 123–124
OrderID attribute, 119
OrderNum attribute, 119
OUTPUT, MERGE and, 152–155

(MOLAP); also Online Analytical
Processing (OLAP)

reliability, hardware, 202
Reparent method, 86–88
reporting services, 219–225

chart data region, 224–225

STContains method, 108
STDifference method, 108–109
STDistance method, 108
STEquals method, 108
STGeomFromText method,

114–115

7.indd 235 7/1/2008 6:58:04 PM

236

Z01I625587.indd 236
spatial indexing

STIntersection method, 108
STIntersects method, 108
STUnion method, 108
STWithin method, 108
working with, 105–109

spatial indexing, 110–113
creating, 111–113
density, 110
rules and restrictions, 111

spatial reference identifiers (SRIDs),
115

specifications, auditing, 21–25
database audit, 23–25
server audit, 22–23

SQL Server Management Studio,
policy-based management, 2–3

SQL Server Managent Studio (SSMS)
enhancements, 172–178

Error List, 174–175
Intellisense, 172–174
PowerShell, 177–178
Service Broker enhancements,

175–176
SQL Server, auditing, 17–28

C2 audit mode, 18
data definition language (DDL)

triggers, 18
data manipulation language

(DML) triggers, 18
database audit specifications,

23–25
results, 25–28
server audit specifications, 22–23
specifications, 21–25
steps, 19–21

SQL Server, policy-based
management, 1–2

SRIDs (spatial reference identifiers),
115

SSAS (SQL Server 2008 Analysis
Services), 226–230

block computation, 226–228
enhanced backup, 228–229
scalable shared databases, 230
writeback performance, 229

SSIS enhancements, 211–219
Change Data Capture (CDC), 219
data profiling, 216–218
Lookup, 214–216
MERGE, 212–213
performing ETL, 211–214
scripting, 218

STDistance method, 108
STEquals method, 108
STGeomFromText method, 114–115
STIntersection method, 108
STIntersects method, 108
STUnion method, 108
STWithin method, 108
subnets, 204–205
suspect pages table, 201
system CLR types, 172
System Consistency Checker (SCC),

207

T
table type, user-defined, 131–132
table value constructor, 142–144
tables, defining with FILESTREAM,

102
table-value parameters, 132–138
target sets, policy-based

management, 8–10
TDE (transparent data encryption),

29–36
certificate and key management,

33–36
explained, 31–32
overview, 29–30
performance considerations,

32–33
tempdb and, 33
uses, 30–31
when to use, 31

tempdb
TDE (transparent data encryption)

and, 33
ToString method, 85
transparent client redirection,

203–204
transparent data encryption (TDE),

29–36
certificate and key management,

33–36
explained, 31–32
overview, 29–30
performance considerations,

32–33
tempdb and, 33
uses, 30–31
when to use, 31

union and list type improvement,
119–121

updating data with FILESTREAM,
103–104

upgrades, 206–207
user collection set data, 67–69
user-defined aggregates (UDAs),

165–167
user-defined table type, 131–132
user-defined types (UDTs), 169
UTC (Coordinated Universal Time),

121, 130–131

V
VALUE clause, 142–144
variable declaration and

assignment, 139–142
viewing collection data, 65–67
viewing plan guides, 75–77

W
WHEN MATCHED clause, 146
WHEN NOT MATCHED BY SOURCE

clause, 147
WHEN NOT MATCHED BY TARGET

clause, 147
working with HIERARCHYID, 93–98
workload groups, 41–42

X
XML data type, 115–125

let clause, 123–124
changing case, 122
converting to hierarchy, 97–98
data manipulation language,

124–125
DateTime, Date, and Time

validation, 121–122
lax validation support, 115–119
schema validation enhancements,

115–122
union and list type improvement,

119–121
XQuery, 122–125

XQuery, 122–125
changing case, 122
data manipulation language,

124–125

slowly changing dimension, type,

212–214
SQL Server Import/Export Wizard,

219
STContains method, 108
STDifference method, 108–109

U
UDAs (user-defined aggregates),

165–167
UDTs (user-defined types), 169

let clause, 123–124

7/1/2008 6:58:05 PM

Peter DeBetta

Peter DeBetta, a Microsoft MVP for SQL Server, is an independent consultant, author,
and architect specializing in design, development, implementation, and deployment of
Microsoft® SQL Server, Microsoft SharePoint Server, and .NET solutions.

Peter develops software, teaches courses, presents at various conferences, includ-
ing Microsoft TechEd, PASS Community Summit, VSLive!, DevWeek, DevTeach, and
SQLConnections. Peter writes courseware, articles, books (like this one), and is a co-founder
of the popular SQLblog.com website.

In his spare time, you can find Peter singing and playing guitar, taking pictures, or simply
enjoying life with his wife, son, and daughter.

Greg Low

Greg is an internationally recognized consultant, developer, and trainer. He has been work-
ing in development since 1978, holds a PhD in Computer Science and a host of Microsoft
certifications. Greg is the country lead for Solid Quality, a SQL Server MVP, and one of only
three Microsoft Regional Directors for Australia. Greg also hosts the SQL Down Under pod-
cast (www.sqldownunder.com), organizes the SQL Down Under Code Camp, and co-organizes
CodeCampOz. Greg is a Professional Association for SQL Server (PASS) board member.

Mark Whitehorn

Dr. Mark Whitehorn specializes in the areas of data analysis, data modeling, data warehous-
ing, and business intelligence (BI). He works as a consultant for a number of national and
international companies, designing databases and BI systems, and is a mentor with Solid
Quality Mentors.

In addition to his consultancy practice, he is a well-recognized commentator on the comput-
er world, publishing about 150,000 words a year, which appear in the form of articles, white
papers, and books. His database column in PCW has been running for 15 years, his BI column
in Server Management magazine for five.

For relaxation he collects, restores, and races historic cars.

Z02B625587.indd 233 6/30/2008 2:08:08 PM

	Cover
	Copyright Page
	More Resources for SQL Server 2008

	Dedication
	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	T-SQL: Still Here to Stay
	Goals
	Working with Samples
	Who Should Read This Book
	Disclaimer
	System Requirements
	Support

	Chapter 1: Security and Administration
	Introduction
	Policy-Based Management
	Policy Management in SQL Server 2008
	Policy-Based Management in SQL Server Management Studio
	Policy-Based Management Objects
	Policy Checking and Preventing
	Policy-Based Management in Practice

	Auditing SQL Server
	C2 Audit Mode
	Other Audit Techniques
	Auditing in SQL Server 2008
	The Audit
	Audit Specifications
	Audit Results
	Bonus Query

	Transparent Data Encryption
	What Is Transparent Data Encryption?
	Why Use TDE
	How Does TDE Work?
	Performance Considerations
	Certificate and Key Management

	Extensible Key Management
	EKM in Practice

	Summary

	Chapter 2: Performance
	Resource Governor
	Resource Pools
	Workload Groups
	The Classifier Function
	Creating Resource Pools and Workload Groups

	Data and Backup Compression
	Data Compression
	Backup Compression
	Using Resource Governor to Minimize CPU Impact
	Other Notes Regarding Compression

	Performance Data Collection
	Data Collection Setup
	Creating Collection Sets and Items
	Collecting Data

	Query Plan Freezing
	Plan Forcing
	Plan Freezing
	Viewing Plan Guides

	Summary

	Chapter 3: Type System
	Introduction
	HIERARCHYID
	Compact Design
	Creating and Managing a Hierarchy
	Indexing
	Working with HIERARCHYID

	FILESTREAM
	Configuring FILESTREAM
	Using FILESTREAM

	Spatial Data Types
	Types of Spatial Data
	Working with the Spatial Data Types
	Spatial Indexing
	Spatial in the World

	XML Data Type
	XML Schema Validation Enhancements
	XQuery

	New Date and Time Data Types
	New Data and Time Functions and Functionality
	Notes on Conversion

	User-Defined Table Types and Table-Valued Parameters
	User-Defined Table Type
	Table-Valued Parameters
	Table-Valued Parameters in Action

	Summary

	Chapter 4: Programmability
	Variable Declaration and Assignment
	Table Value Constructor Through VALUE Clause
	Merge
	The WHEN Clauses

	GROUP BY GROUPING SETS
	GROUPING SETS
	ROLLUP
	CUBE
	GROUPING_ ID
	Miscellaneous Thoughts

	Object Dependencies
	CLR Enhancements
	Large Aggregates
	Large User-Defined Types
	Null Support
	Order Awareness
	System CLR Types

	SQL Server Management Studio Enhancements
	Intellisense
	Service Broker Enhancements in SSMS
	PowerShell

	Summary

	Chapter 5: Storage
	Introduction
	Sparse Columns
	What Is a Sparse Column?
	When to Use Sparse Columns
	Sparse Column Rules and Regulations
	Column Sets

	Filtered Indexes
	Filtered Index
	Filtered Statistics

	Summary

	Chapter 6: Enhancements for High Availability
	Database Mirroring Enhancements in SQL Server 2008
	Automatic Page Repair
	Log Performance Enhancements
	Transparent Client Redirection

	SQL Server Clustering Enhancements
	Windows Server 2008 Clustering Enhancements
	SQL Server Cluster Setup and Deployment Improvements
	Rolling Upgrades and Patches
	Cluster Validation Tool
	High-Availability-Related Dynamic Management Views Enhancements

	Summary

	Chapter 7: Business Intelligence Enhancements
	SQL Server Integration Services Enhancements
	Performing ETL
	Lookup
	Data Profiling
	Other New Features

	SQL Server Reporting Services
	Report Designer in SQL Server Business Intelligence Development Studio
	Report Builder
	New Controls in Both Authoring Environments
	Microsoft Office Rendering

	SQL Server Analysis Services
	Block Computation
	Analysis Services Enhanced Backup
	Enhancement to Writeback Performance
	Scalable Shared Databases for SSAS
	Other New Features

	Summary

	Index
	About the Authors

